Free Response \#1 Answers

Check each question. Add up the points earned and write your score. Example: 16 out of 36
1)
(a) $v(5.5)=-0.45337, a(5.5)=-1.35851$

The speed is increasing at time $t=5.5$, because velocity and acceleration have the same sign.
(b) Average velocity $=\frac{1}{6} \int_{0}^{6} v(t) d t=1.949$
(c) Distance $=\int_{0}^{6}|v(t)| d t=12.573$
(d) $v(t)=0$ when $t=5.19552$. Let $b=5.19552$.
$v(t)$ changes sign from positive to negative at time $t=b$.
$x(b)=2+\int_{0}^{b} v(t) d t=14.134$ or 14.135

2 : conclusion with reason
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { considers } v(t)=0 \\ 1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
2)
(a) $H^{\prime}(3.5) \approx \frac{H(5)-H(2)}{5-2}$

$$
=\frac{52-60}{3}=-2.666 \text { or }-2.667 \text { degrees Celsius per minute }
$$

(b) $\frac{1}{10} \int_{0}^{10} H(t) d t$ is the average temperature of the tea, in degrees Celsius, over the 10 minutes.
$\frac{1}{10} \int_{0}^{10} H(t) d t \approx \frac{1}{10}\left(2 \cdot \frac{66+60}{2}+3 \cdot \frac{60+52}{2}+4 \cdot \frac{52+44}{2}+1 \cdot \frac{44+43}{2}\right)$

$$
=52.95
$$

(c) $\int_{0}^{10} H^{\prime}(t) d t=H(10)-H(0)=43-66=-23$

The temperature of the tea drops 23 degrees Celsius from time $t=0$ to time $t=10$ minutes.
(d) $B(10)=100+\int_{0}^{10} B^{\prime}(t) d t=34.18275 ; \quad H(10)-B(10)=8.817$ The biscuits are 8.817 degrees Celsius cooler than the tea.

1 : answer
$3:\left\{\begin{array}{l}1: \text { meaning of expression } \\ 1: \text { trapezoidal sum } \\ 1: \text { estimate }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { value of integral } \\ 1: \text { meaning of expression }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { uses } B(0)=100 \\ 1: \text { answer }\end{array}\right.$
3)
(a) $\lim _{x \rightarrow 0^{-}}(1-2 \sin x)=1$
$\lim _{x \rightarrow 0^{+}} e^{-4 x}=1$
$f(0)=1$
So, $\lim _{x \rightarrow 0} f(x)=f(0)$.
Therefore f is continuous at $x=0$.
(b) $f^{\prime}(x)= \begin{cases}-2 \cos x & \text { for } x<0 \\ -4 e^{-4 x} & \text { for } x>0\end{cases}$
$-2 \cos x \neq-3$ for all values of $x<0$.
$-4 e^{-4 x}=-3$ when $x=-\frac{1}{4} \ln \left(\frac{3}{4}\right)>0$.
Therefore $f^{\prime}(x)=-3$ for $x=-\frac{1}{4} \ln \left(\frac{3}{4}\right)$.
(c) $\int_{-1}^{1} f(x) d x=\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x$

$$
\begin{aligned}
& =\int_{-1}^{0}(1-2 \sin x) d x+\int_{0}^{1} e^{-4 x} d x \\
& =[x+2 \cos x]_{x-1}^{x-0}+\left[-\frac{1}{4} e^{-4 x}\right]_{x-0}^{x=1} \\
& =(3-2 \cos (-1))+\left(-\frac{1}{4} e^{-4}+\frac{1}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Average value } & =\frac{1}{2} \int_{-1}^{1} f(x) d x \\
& =\frac{13}{8}-\cos (-1)-\frac{1}{8} e^{-4}
\end{aligned}
$$

$4:\left\{\begin{array}{l}1: \int_{-1}^{0}(1-2 \sin x) d x \text { and } \int_{0}^{1} e^{-4 x} d x \\ 2: \text { antiderivatives } \\ 1: \text { answer }\end{array}\right.$
2 : analysis
$3:\left\{\begin{array}{l}2: f^{\prime}(x) \\ 1: \text { value of } x\end{array}\right.$
(a) $g(-3)=2(-3)+\int_{0}^{-3} f(t) d t=-6-\frac{9 \pi}{4}$
$g^{\prime}(x)=2+f(x)$
$g^{\prime}(-3)=2+f(-3)=2$
(b) $g^{\prime}(x)=0$ when $f(x)=-2$. This occurs at $x=\frac{5}{2}$.
$g^{\prime}(x)>0$ for $-4<x<\frac{5}{2}$ and $g^{\prime}(x)<0$ for $\frac{5}{2}<x<3$.
Therefore g has an absolute maximum at $x=\frac{5}{2}$.
(c) $g^{\prime \prime}(x)=f^{\prime}(x)$ changes sign only at $x=0$. Thus the graph of g has a point of inflection at $x=0$.
(d) The average rate of change of f on the interval $-4 \leq x \leq 3$ is $\frac{f(3)-f(-4)}{3-(-4)}=-\frac{2}{7}$.
To apply the Mean Value Theorem, f must be differentiable at each point in the interval $-4<x<3$. However, f is not differentiable at $x=-3$ and $x=0$.
$3:\left\{\begin{array}{l}1: g(-3) \\ 1: g^{\prime}(x) \\ 1: g^{\prime}(-3)\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { considers } g^{\prime}(x)=0 \\ 1: \text { identifies interior candidate } \\ 1: \text { answer with justification }\end{array}\right.$

1 : answer with reason
$2:\left\{\begin{array}{l}1: \text { average rate of change } \\ 1: \text { explanation }\end{array}\right.$

