Exponential Models WKST

I. Interest

- 1. Jackie makes an \$800 deposit into a bank account earning 4.5% interest.
 - a. If the interest is compounded quarterly how much money will Jackie have in 10 years?
 - b. If the interest is compounded continuously how much money will Jackie have in 10 years?
 - c. If Jackie's money is compounded continuously, how long will it take her money to double?
 - d. If Jackie's money is compounded monthly, how long will it take her money to triple?
- 2. Joe deposits \$3500 into a bank account that earns interest compounded continuously. If Joe's money doubles in 9 years, what interest rate was used?
- 3. Your generous family gives you a total of \$3500 as gifts when you graduate from high school. You decide to invest this money in a savings account that earns interest at a rate of 3.7% per year. How much will you have in 4 years if your interest is compounded...
 - a. Annually?
 - b. Quarterly?
 - c. Weekly?
 - d. Continuously?
- 4. If you invest \$10,000 at a 2.6% interest rate compounded continuously how long will it take for your investment to grow to \$15,000? Round to 3 decimal places.
- 5. If your initial investment triples in 20 years what interest rate was used if your interest is compounded...
 - a. Continuously?
 - b. Monthly?
- 6. How much *interest* is earned in 30 years on an initial investment of \$500 in an account that earns 3.4% interest compounded continuously?
- Joe decides to invest \$8000 for 25 years. Bank A compounds interest continuously at an annual rate of 3%. Bank B compounds interest quarterly at an annual interest rate of 4.5%. What bank should Joe pick?
- 8. If a savings account earns 4% interest compounded semiannually, how much money should be invested so that you have \$25,000 at the end of 15 years?
- 9. Fill in the table for a savings account in which the interest is compounded continuously.

	Initial Investment	Annual % Rate	Time to Double	Amount After 10 Years
a)	\$10,000	3.50%		
Þ)	\$7,500		21 years	
c)	\$5,000			\$5,665.74

II. Other Models

- 10. At a local college campus of 7500 students, one student returns from vacation with a contagious and longlasting virus. The spread of the virus is modeled by $y = \frac{7500}{1+7499e^{-0.9t}}$ $t \ge 0$, where y is the total number of students affected after t days. The college will cancel classes when 30% or more of the students are infected.
 - a. How many students will be infected after 4 days?
 - b. After how many days will the college cancel classes?
- 11. Movie tickets now average \$9.75 a ticket, but are increasing 15% per year. How much will they cost 5 years from now?
- 12. A powerful computer is purchased for \$2000, but on the average loses 20% of its value each year. How much will it be worth 4 years from now?

- 13. Dinner at your grandfather's favorite restaurant now costs \$25.25 and has been increasing steadily at 4% per year. How much did it cost 35 years ago when he was courting your grandmother?
- 14. If a gallon of milk costs \$3 now and the price is increasing 10% per year, how long before milk costs \$10 a gallon?
- 15. The number of bacteria present in a colony is 180 at 12 noon and the bacteria grows at a rate of 22% per hour. How many will be present at 8 p.m.? Round to the nearest whole number.
- 16. A house purchased for \$226,000 has lost 4% of its value each year for the past five years. What is it worth now?
- 17. A concert has been sold out for weeks, and as the date of the concert draws closer, the price of the ticket increases. The cost of a pair of tickets was \$150 yesterday and is \$162 today. Assuming that the cost continues to increase at this rate:
 - a. What is the daily rate of increase?
 - b. What will be the cost one week from now, the day before the concert?
 - c. What was the cost two weeks ago?
- 18. You plant a sunflower seedling in your garden. The seedling's height h (in centimeters) after t weeks can

be modeled by the logistic equation $h(t) = \frac{256}{1+13e^{-0.65t}}$. Find the time it takes the sunflower seedling to

reach a height of 200 centimeters.

- 19. Most cars decrease in value after you leave the dealer. However, some cars are now considered "classics" and actually increase in value. You have the choice of owning two cars: A 2006 Mazda Miata which is worth \$19,000 but is depreciating 10% per year, or a classic 1970 Ford Mustang which is worth \$11,500 and is increasing in value by 6% each year.
 - a. Write an equation to represent the value of each car over time.
 - b. Using your graphing calculator, graph both functions simultaneously.
 - c. Use your graphing calcualtor to determine approximately when the Mazda and the Ford have the same value. (Find the intersection using the intersection tool...)

III. Review (NO CALCULATOR)

- 20. Solve. State the exact answer.
 - a. $\log 3x 8 = -6$
 - b. $\ln(3x+9) = \ln(-5x+1)$
 - c. $\ln(3n-5) + \ln(n) = \ln(14 + 2n^2)$
 - d. $2 e^{2x+3} = -1$
 - e. $4^{5-x} = 9^{3x+2}$

ANSWERS

١.

1.

- a. \$1251.50 b. \$1254.65
- c. 15.403 years
- d. 24.459 years
- 2. 7.702%
- 3.
- a. \$4047.46
- b. \$4055.54
- c. \$4058.08 d. \$4058.30

4. 15.595 years 5. a. 5.493% b. 5.506% 6. \$886.60

- 7. Bank B
- 8. \$13,801.77

9	•

	Initial Investment	Annual % Rate	Time to Double	Amount After 10 Years
a)	\$10 <i>,</i> 000	3.50%	<mark>19.804 years</mark>	<mark>\$14,190.68</mark>
b)	\$7,500	<mark>3.301%</mark>	21 years	<mark>\$10,432.99</mark>
c)	\$5,000	<mark>1.250%</mark>	<mark>55.452 years</mark>	\$5,665.74

н.

- 10.
- a. 36.425 students
- b. 6.413 days
- 11. \$19.61
- 12. \$819.20
- 13. \$6.40
- 14. 12.632 years
- 15. 883
- 16. \$184,274.23
- 17.
- a. 8%
- Ш.
 - 20.
- a. 100/3 b. -1 c. 7 d. $\frac{-3 + \ln 3}{2}$ $5\log 4 - 2\log 9$ e. $3\log 9 + \log 4$

- b. \$277.64
- c. \$55.15
- 18. 5.904 weeks
- 19.
- a. Mazda: $y = 19000(0.9)^x$, Ford:
 - $y = 11500(1.06^{x})$
- b. See calculator
- c. 3.068 years