Existence Theorems: AP Style Questions

If f is continuous for $a \le x \le b$ and differentiable for a < x < b, which of the following could be false?

- (A) $f'(c) = \frac{f(b) f(a)}{b a}$ for some c such that a < c < b.
- (B) f'(c) = 0 for some c such that a < c < b.
- (C) f has a minimum value on $a \le x \le b$.
- (D) f has a maximum value on $a \le x \le b$.

If f is a continuous function on [a,b], which of the following is necessarily true?

- (A) f' exists on (a,b).
- (B) If $f(x_0)$ is a maximum of f, then $f'(x_0) = 0$.
- (C) $\lim_{x \to x_0} f(x) = f\left(\lim_{x \to x_0} x\right)$ for $x_0 \in (a,b)$
- (D) f'(x) = 0 for some $x \in [a,b]$
- (E) The graph of f' is a straight line.

3. Let g be a continuous function on the closed interval [0,1]. Let g(0) = 1 and g(1) = 0. Which of the following is NOT necessarily true?

- (A) There exists a number h in [0,1] such that $g(h) \ge g(x)$ for all x in [0,1].
- (B) For all a and b in [0,1], if a = b, then g(a) = g(b).
- (C) There exists a number h in [0,1] such that $g(h) = \frac{1}{2}$.
- (D) There exists a number h in [0,1] such that $g(h) = \frac{3}{2}$.
- (E) For all h in the open interval (0,1), $\lim_{x\to h} g(x) = g(h)$.

4.

x	0	1	2
f(x)	1	k	2

The function f is continuous on the closed interval [0,2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0,2] if k = 1

- (A) 0
- (B) $\frac{1}{2}$
- (C) 1
- (D) 2
- (E) 3

x	f(x)	f'(x)	g(x)	g '(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.