AP Calculus - Chapter 5/6 MC Review

1.

At each point (x, y) on a certain curve, the slope of the curve is $3x^2y$. If the curve contains the point (0,8), then its equation is

(A) $y = 8e^{x^3}$

(B) $y = x^3 + 8$

(C) $y = e^{x^3} + 7$

(D) $y = \ln(x+1) + 8$

(E) $v^2 = x^3 + 8$

If $\frac{dy}{dt} = -2y$ and if y = 1 when t = 0, what is the value of t for which $y = \frac{1}{2}$?

- (A) $-\frac{\ln 2}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{\ln 2}{2}$ (D) $\frac{\sqrt{2}}{2}$

- (E) $\ln 2$

3.

The number of bacteria in a culture is growing at a rate of $3000e^{\frac{2t}{5}}$ per unit of time t. At t = 0, the number of bacteria present was 7,500. Find the number present at t = 5.

- (A) $1{,}200e^2$ (B) $3{,}000e^2$ (C) $7{,}500e^2$ (D) $7{,}500e^5$ (E) $\frac{15{,}000}{7}e^7$

If the graph of y = f(x) contains the point (0, 2), $\frac{dy}{dx} = \frac{-x}{ve^{x^2}}$ and f(x) > 0 for all x, then $f(x) = \frac{-x}{ve^{x^2}}$

(A) $3+e^{-x^2}$

(B) $\sqrt{3} + e^{-x}$

(C) $1 + e^{-x}$

(D) $\sqrt{3+e^{-x^2}}$

(E) $\sqrt{3+o^{\chi^2}}$

If $\frac{dy}{dx} = 2y^2$ and if y = -1 when x = 1, then when x = 2, y =

- (A) $-\frac{2}{3}$ (B) $-\frac{1}{3}$

6.

If $\frac{dy}{dx} = x^2 y$, then y could be

- (A) $3\ln\left(\frac{x}{3}\right)$ (B) $e^{\frac{x^3}{3}} + 7$ (C) $2e^{\frac{x^3}{3}}$ (D) $3e^{2x}$ (E) $\frac{x^3}{2} + 1$

If $\frac{dy}{dt} = ky$ and k is a nonzero constant, then y could be

- (B) $2e^{kt}$ (C) $e^{kt} + 3$ (D) kty + 5 (E) $\frac{1}{2}ky^2 + \frac{1}{2}$

8.

If $\frac{dy}{dx} = y \sec^2 x$ and y = 5 when x = 0, then y =

(A) $e^{\tan x} + 4$

(B) $e^{\tan x} + 5$

 $5e^{\tan x}$

(D) $\tan x + 5$

 $\tan x + 5e^x$ (E)

Shown above is a slope field for which of the following differential equations?

- (A) $\frac{dy}{dx} = 1 + x$ (B) $\frac{dy}{dx} = x^2$ (C) $\frac{dy}{dx} = x + y$ (D) $\frac{dy}{dx} = \frac{x}{y}$ (E) $\frac{dy}{dx} = \ln y$

10.

The base of a solid is the region enclosed by the graph of $y = e^{-x}$, the coordinate axes, and the line x = 3. If all plane cross sections perpendicular to the x-axis are squares, then its volume is

- (A) $\frac{\left(1-e^{-6}\right)}{2}$ (B) $\frac{1}{2}e^{-6}$
- (C) e^{-6}
- (D) e^{-3}

11.

The base of a solid is the region in the first quadrant enclosed by the parabola $y = 4x^2$, the line x = 1, and the x-axis. Each plane section of the solid perpendicular to the x-axis is a square. The volume of the solid is

- (A) $\frac{4\pi}{3}$ (B) $\frac{16\pi}{5}$
- (C) $\frac{4}{3}$
- (D) $\frac{16}{5}$
- (E) $\frac{64}{5}$

12.

The area of the region in the first quadrant enclosed by the graph of y = x(1-x) and the x-axis is

- (A) $\frac{1}{6}$
- (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{5}{6}$

13.

The area of the region enclosed by the graphs of y = x and $y = x^2 - 3x + 3$ is

(A) $\frac{2}{3}$

(B) 1

- (C) $\frac{4}{3}$

14.

The region R in the first quadrant is enclosed by the lines x = 0 and y = 5 and the graph of $y = x^2 + 1$. The volume of the solid generated when R is revolved about the <u>y-axis</u> is

- (A) 6π
- (B)

The area of the region enclosed by the curve $y = \frac{1}{x-1}$, the x-axis, and the lines x = 3 and x = 4 is

- (B) $\ln \frac{2}{3}$ (C) $\ln \frac{4}{3}$ (D) $\ln \frac{3}{2}$

16.

What is the volume of the solid generated by rotating about the x-axis the region enclosed by the curve $y = \sec x$ and the lines x = 0, y = 0, and $x = \frac{\pi}{3}$?

- (A) $\frac{\pi}{\sqrt{3}}$
- (B)
- (C) $\pi\sqrt{3}$
- (D) $\frac{8\pi}{3}$
- (E) $\pi \ln \left(\frac{1}{2} + \sqrt{3} \right)$

17.

The region enclosed by the x-axis, the line x = 3, and the curve $y = \sqrt{x}$ is rotated about the x-axis. What is the volume of the solid generated?

- (A) 3π
- (B) $2\sqrt{3}\pi$ (C) $\frac{9}{2}\pi$

- (D) 9π (E) $\frac{36\sqrt{3}}{5} \pi$

18.

The area of the region bounded by the curve $y = e^{2x}$, the x-axis, the y-axis, and the line x = 2 is equal to

(B) $\frac{e^4}{2} - 1$

(C) $\frac{e^4}{2} - \frac{1}{2}$

 $2e^{4}-2$ (E)

19.

The region in the first quadrant bounded by the graph of $y = \sec x$, $x = \frac{\pi}{4}$, and the axes is rotated about the x-axis. What is the volume of the solid generated?

- (B) $\pi 1$

20.

The area of the region between the graph of $y = 4x^3 + 2$ and the x-axis from x = 1 to x = 2 is

- (A) 36
- (B) 23
- (C) 20
- (D) 17
- (E)

21.

The area of the region in the <u>first quadrant</u> that is enclosed by the graphs of $y = x^3 + 8$ and y = x + 8 is

- (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$

- (D) 1

22.

The region enclosed by the graph of $y = x^2$, the line x = 2, and the x-axis is revolved about the y-axis. The volume of the solid generated is

- (A) 8π (B) $\frac{32}{5}\pi$ (C) $\frac{16}{3}\pi$ (D) 4π

- (E) $\frac{8}{3}\pi$

23.

The area of the region bounded by the lines x = 0, x = 2, and y = 0 and the curve $y = e^{\overline{2}}$ is

- (B) e-1 (C) 2(e-1) (D) 2e-1
- (E)