AP Calculus - Chapter 5/6 FR Review

1. Consider the differential equation given by $\frac{d y}{d x}=\frac{x y}{2}$ (no calculator)
a. On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.

b. Find the particular solution $\mathrm{y}=\mathrm{f}(\mathrm{x})$ to the given differential equation with the initial condition $f(0)=3$.
c. Write an equation of the line tangent to $y=f(x)$ at $x=2$.
2. Consider the differential equation given by $\frac{d y}{d x}=x(y-1)^{2}$ (no calculator)
a. On the axes provided, sketch a slope field for the given differential equation at the eleven points indicated.

b. Use the slope field for the given differential equation to explain why a solution could not have the graph shown below.

c. Find the particular solution $\mathrm{y}=\mathrm{f}(\mathrm{x})$ to the given differential equation with the initial condition $f(0)=-1$
d. Find the range of the solution found in part (c).

3. (no calculator)

Let R be the region bounded by the x-axis, the graph of $y=\sqrt{x}$, and the line $x=4$.
(a) Find the area of the region R.
(b) Find the value of h such that the vertical line $x=h$ divides the region R into two regions of equal area.
(c) Find the volume of the solid generated when R is revolved about the x-axis.
(d) The vertical line $x=k$ divides the region R into two regions such that when these two regions are revolved about the x-axis, they generate solids with equal volumes. Find the value of k.

4. (calculator)

. Let f be a function with $f(1)=4$ such that for all points (x, y) on the graph of f the slope is given by $\frac{3 x^{2}+1}{2 y}$.
(a) Find the slope of the graph of f at the point where $x=1$.
(b) Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate $f(1.2)$.
(c) Find $f(x)$ by solving the separable differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ with the initial condition $f(1)=4$.
(d) Use your solution from part (c) to find $f(1.2)$.

5. (calculator)

The rate at which people enter an amusement park on a given day is modeled by the function E defined by

$$
E(t)=\frac{15600}{\left(t^{2}-24 t+160\right)}
$$

The rate at which people leave the same amusement park on the same day is modeled by the function L defined by

$$
L(t)=\frac{9890}{\left(t^{2}-38 t+370\right)}
$$

Both $E(t)$ and $L(t)$ are measured in people per hour and time t is measured in hours after midnight. These functions are valid for $9 \leq t \leq 23$, the hours during which the park is open. At time $t=9$, there are no people in the park.
(a) How many people have entered the park by 5:00 P.M. $(t=17)$? Round answer to the nearest whole number.
(b) The price of admission to the park is $\$ 15$ until 5:00 P.M. $(t=17)$. After 5:00 P.M., the price of admission to the park is $\$ 11$. How many dollars are collected from admissions to the park on the given day? Round your answer to the nearest whole number.
(c) Let $H(t)=\int_{9}^{t}(E(x)-L(x)) d x$ for $9 \leq t \leq 23$. The value of $H(17)$ to the nearest whole number is 3725 . Find the value of $H^{\prime}(17)$ and explain the meaning of $H(17)$ and $H^{\prime}(17)$ in the context of the park.
(d) At what time t, for $9 \leq t \leq 23$, does the model predict that the number of people in the park is a maximum?

6. (calculator)

Let R be the shaded region in the first quadrant enclosed by the graphs of $y=e^{-x^{2}}, y=1-\cos x$, and the y-axis, as shown in the figure above.
(a) Find the area of the region R.
(b) Find the volume of the solid generated when the region R is revolved about the x-axis.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

7. (calculator)

Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the x-axis and the graphs of $y=2-x^{3}$ and $y=\tan x$. The region S is bounded by the y-axis and the graphs of $y=2-x^{3}$ and $y=\tan x$.
(a) Find the area of R.
(b) Find the area of S.
(c) Find the volume of the solid generated when S is revolved
 about the x-axis.

8. (no calculator)

The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a twice-differentiable and strictly increasing function R of time t. The graph of R and a table of selected values of $R(t)$, for the time interval $0 \leq t \leq 90$ minutes, are shown above.
(a) Use data from the table to find an approximation for $R^{\prime}(45)$. Show the computations that lead to your answer. Indicate units of measure.

t (minutes)	$R(t)$ (gallons per minute)
0	20
30	30
40	40
50	55
70	65
90	70

(b) The rate of fuel consumption is increasing fastest at time $t=45$ minutes. What is the value of $R^{\prime \prime}(45)$? Explain your reasoning.
(c) Approximate the value of $\int_{0}^{90} R(t) d t$ using a left Riemann sum with the five subintervals indicated by the data in the table. Is this numerical approximation less than the value of $\int_{0}^{90} R(t) d t$? Explain your reasoning.
(d) For $0<b \leq 90$ minutes, explain the meaning of $\int_{0}^{b} R(t) d t$ in terms of fuel consumption for the plane. Explain the meaning of $\frac{1}{b} \int_{0}^{b} R(t) d t$ in terms of fuel consumption for the plane. Indicate units of measure in both answers.

Answers

