AP Calculus - Chapter 5/6 FR Review

4. (calculator)

. Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.

- (a) Find the slope of the graph of f at the point where x = 1.
- (b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate f(1.2).
- (c) Find f(x) by solving the separable differential equation $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$ with the initial condition f(1) = 4.
- (d) Use your solution from part (c) to find f(1.2).

5. (calculator)

The rate at which people enter an amusement park on a given day is modeled by the function E defined by

$$E(t) = \frac{15600}{\left(t^2 - 24t + 160\right)}$$

The rate at which people leave the same amusement park on the same day is modeled by the function L defined by

$$L(t) = \frac{9890}{\left(t^2 - 38t + 370\right)}.$$

Both E(t) and L(t) are measured in people per hour and time t is measured in hours after midnight. These functions are valid for $9 \le t \le 23$, the hours during which the park is open. At time t = 9, there are no people in the park.

- (a) How many people have entered the park by 5:00 P.M. (t = 17)? Round answer to the nearest whole number.
- (b) The price of admission to the park is \$15 until 5:00 P.M. (t = 17). After 5:00 P.M., the price of admission to the park is \$11. How many dollars are collected from admissions to the park on the given day? Round your answer to the nearest whole number.
- (c) Let $H(t) = \int_{9}^{t} (E(x) L(x)) dx$ for $9 \le t \le 23$. The value of H(17) to the nearest whole number is 3725. Find the value of H'(17) and explain the meaning of H(17) and H'(17) in the context of the park.
- (d) At what time t, for $9 \le t \le 23$, does the model predict that the number of people in the park is a maximum?

6. (calculator)

Let R be the shaded region in the first quadrant enclosed by the graphs of

- $y = e^{-x^2}$, $y = 1 \cos x$, and the y-axis, as shown in the figure above.
- (a) Find the area of the region R.
- (b) Find the volume of the solid generated when the region R is revolved about the x-axis.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

7. (calculator)

Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the x-axis and the graphs of $y = 2 - x^3$ and $y = \tan x$. The region S is bounded by the y-axis and the graphs of $y = 2 - x^3$ and $y = \tan x$.

- (a) Find the area of R.
- (b) Find the area of S.
- (c) Find the volume of the solid generated when S is revolved about the x-axis.

8. (no calculator)

The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a

twice-differentiable and strictly increasing function R of time t. The graph of R and a table of selected values of R(t), for the time interval $0 \le t \le 90$ minutes, are shown above.

(a) Use data from the table to find an approximation for R'(45). Show the computations that lead to your answer. Indicate units of measure.

- (b) The rate of fuel consumption is increasing fastest at time t = 45 minutes. What is the value of R''(45)? Explain your reasoning.
- (c) Approximate the value of $\int_0^{90} R(t) dt$ using a left Riemann sum with the five subintervals indicated by the data in the table. Is this numerical approximation less than the value of $\int_0^{90} R(t) dt$? Explain your reasoning.
- (d) For $0 < b \le 90$ minutes, explain the meaning of $\int_0^b R(t)dt$ in terms of fuel consumption for the plane. Explain the meaning of $\frac{1}{b}\int_0^b R(t)dt$ in terms of fuel consumption for the plane. Indicate units of measure in both answers.

Answers

1Þ	$y = 3e^{x^2/4}$
1C	y - 3e = 3e(x - 2)
2b	y – 3e = 3e(x – 2) There is a horizontal asymptote at y = 1
	-2
20	$y = \frac{-2}{x^2 + 1} + 1$
2d	
r	ange: [-1, 1)
3a	16/3
зÞ	$4^{2/3}$
3C	8π
3d	$\frac{2\sqrt{2}}{\frac{1}{2}}$
4a	$\frac{1}{2}$
4b	4.1
4c	$f(x) = \sqrt{x^3 + x + 14}$
4d	4.114
5a	6004 people entered the park by 5 pm
5Þ	The amount collected was \$104,048
5C	There were 375 people in the park at t=17. Since $H^{\prime}(17)$ = $E(17)$ – $L(17)$ = -380.281 < 0 , the
	number of people in the park was decreasing at a rate of approximately $\frac{1}{380}$ people/hr at t=17 hrs.
5d	t=15.794 hrs by the Extreme Value Theorem
6a	0.590 or 0.591
6Ь	1.746 or 1.747
6с 7а	0.461 0.729
7b	1.160 or 1.161
7¢	8.331 or 8.332
8a	1.5 gal/min ²
8b	R''(45) = 0 since $R'(t)$ has a maximum at t=45
8c 8d	3700; Yes, this approximation is less because the graph of R is increasing on the interval
00	c^b
	$\int_0^b R(t) dt$ is the total amount of fuel in
	gallons consumed for the first b minutes.
	$rac{1}{b}\int_{0}^{b}R(t)dt$ is the average value of the rate of
	fuel consumption in gallons/min during the
	first b minutes.
L	