A2H: Chapter 2 Review

Simplify. Your answer should only contain positive exponents.

1. $\left(2 y^{3}\right)\left(3 x y^{3}\right) \div\left(3 x^{2} y^{4}\right)$
2. $\frac{3 x^{0} y^{2}}{\left(2 x^{-1}\right)\left(4 x^{2} y\right)} \div \frac{\left(2 x^{-4}\right)^{3}}{2 y^{-4}}$

Evaluate each polynomial using synthetic substitution.
3. $h(x)=7-x, h(-3)$
4. $g(x)=4 x^{4}-7 x^{3}+6 x^{2}-5,8 g(2)$

For each problem:
a. Simplify each expression given the following polynomials.
b. State the degree and leading coefficient, or state why the answer does not represent a polynomial.
c. Classify your answer by degree and number of terms. If the expression does not represent a polynomial, do not classify.

$f(x)=9-x^{2}$	$g(x)=4 x^{4}+8 x^{3}-37 x^{2}-74 x+13$	$h(x)=x-3$	$m(x)=2 x^{2}$

5. $h-f$
6. f^{3}
7. $\frac{f}{h}$
8. $\frac{g}{f}$
9. $\frac{g}{m}$

Describe the end behavior.
10. $f(x)=x^{3}+3 x^{2}-4 x$
11. $f(x)=x^{4}-3 x^{2}+6 x$
12. $f(x)=-2 x^{2}+8 x+5$
13. $f(x)=-4 x^{3}-4 x^{2}+8$

Match each polynomial to its graph.

14. $f(x)=x^{3}+x^{2}-4 x$
15. $f(x)=x^{4}-3 x^{2}+6 x$
16. $f(x)=-2 x^{2}+8 x+5$
17. $f(x)=-4 x^{3}-4 x^{2}+8$
18. $f(x)=-(x+1)^{3}(2 x-3)^{2}$

Sketch the graph of each polynomial function.
19. $f(x)=x^{5}-4 x^{3}+x^{2}-4$
20. $g(x)=16 x^{4}-8 x^{2}+1$

Determine if $g(x)$ is a factor of $f(x)$. Explain your reasoning.
21. $f(x)=x^{4}-1, g(x)=x^{2}+1$
22. $f(x)=x^{3}-2 x^{2}+x-5, g(x)=x-3$

Find all zeros.
23. $f(x)=x^{3}+2 x^{2}+9 x+18$
24. $f(x)=x^{3}+2 x$
25. $f(x)=18 x^{4}-54 x^{2}+40$
26. $f(x)=64 x^{7}+x^{4}$
27. $f(x)=6 x^{3}+5 x^{2}-9 x+2$
28. If $x-k$ is a factor of $x^{3}+2 x^{2}-2 x-k$, what are the possible values of k ?
29. (A bit tough, but doable)...If $f(2-i)=0$, find all zeros of $f(x)=x^{5}-6 x^{4}+11 x^{3}-x^{2}-14 x+5$.
30. A clothing manufacturer's profitability can be modeled by $p(x)=-x^{4}+40 x^{2}-144$, where x is the number of items sold in thousands and $p(x)$ is the company's profit in thousands of dollars. For what x-value(s) will the company earn no profit?
31. Which of the following statements about a polynomial function with degree n is FALSE?
a) has at most n turning points
b) may have up to n distinct zeros
c) if n is odd, it has at least one real zero
d) if n is even, it may have no x-intercepts
e) if n is odd, the end behavior will be opposite
32. The volume of a rectangular prism is 440 cubic centimeters. The dimensions of the figure are $x, x-3$ and $x+3$. Write a polynomial equation in standard form that can be used to find the dimensions of the rectangular prism.
33. A polynomial $f(x)$ is divided by $x-c$. What can you conclude if:
a) the remainder is o?
b) the remainder is 1 ?
34. If $f(x)$ has a degree of 5 and a positive leading coefficient and $g(x)$ has a degree of 3 and has a positive leading coefficient, determine the end behavior of $\frac{f(x)}{g(x)}$. Explain your reasoning.
35. Sketch the graph of a polynomial with the given characteristics:

- $5^{\text {th }}$ degree
- end behavior: $\begin{array}{ll}x \rightarrow \infty & y \rightarrow \infty \\ x \rightarrow-\infty & y \rightarrow-\infty\end{array}$
- two imaginary zeros
- one bouncing negative zero

36. True or False: If False, explain why.
a) An even degree polynomial has a range of all real numbers.
b) Only polynomials with a constant term of o will pass through the origin.
c) A cubic polynomials can five terms.
d) Odd degree polynomials must have at least one x-intercept.
e) A quartic trinomial can have at most three turning points.
f) Algebra 2 is awesome.

ANSWERS

30.2000 and 6000 t-shirts	31. A	32. $x^{3}-9 x-440=0$
33. a) $x-c$ is a factor of $f(x)$ b) $x-c$ is NOT a factor of $f(x)$	34. A quintic polynomial divided by a cubic polynomial will yield a quadratic. If both leading coefficients are positive the quotient will also have a positive leading coefficient. $\begin{aligned} & x \rightarrow-\infty, \mathrm{f}(x) \rightarrow \infty \\ & x \rightarrow \infty, \mathrm{f}(x) \rightarrow \infty \end{aligned}$	35. (a possible sketch)
36. a) False. Even degreed polynomials have the same end behavior so they will have a maximum or minimum y-value and a restricted range. b) True.		
c) False. A cubic polynomial can have at most four terms.		
d) True. Odd degreed polynomials have the opposite end behavior and a range of all real numbers so there must be one real number, x , such that $f(x)=0$.		
e) True.		
f) True. (DUH!)		

