A₂H: Chapter ₂ Review

	actor of $x^3 + 2x^2 - 2x - k$, what are the possible values of k?
29. (A bit tough,	but doable)If $f(2-i) = 0$, find all zeros of $f(x) = x^5 - 6x^4 + 11x^3 - x^2 - 14x + 5$.
30. A clothing m	anufacturer's profitability can be modeled by $p(x) = -x^4 + 40x^2 - 144$, where x is the
	sold in thousands and $p(x)$ is the company's profit in thousands of dollars. For
what x-value(s)	will the company earn no profit?
31. Which of the	following statements about a polynomial function with degree <i>n</i> is <i>FALSE</i> ?
a) has at most <i>n</i>	turning points
, , ,	to <i>n</i> distinct zeros
	ias at least one real zero may have no x-intercepts
-	end behavior will be opposite
•	
x, $x-3$ and $x+3$	of a rectangular prism is 440 cubic centimeters. The dimensions of the figure are 3. Write a polynomial equation in standard form that can be used to find the ne rectangular prism.
33. A polynomial	f(x) is divided by $x-c$. What can you conclude if:
a) the remainder	is o?
b) the remainde	r is 1?
34. If $f(x)$ has a	degree of 5 and a positive leading coefficient and $g(x)$ has a degree of 3 and has a
positive leading	coefficient, determine the end behavior of $\frac{f(x)}{g(x)}$. Explain your reasoning.
	ask of a polynomial with the given characteristics
35. Sketch the gr	aph of a polynomial with the given characteristics:
-	
- 5 th degree	$x \to \infty \qquad y \to \infty$
- 5 th degree - end behav	$x \to \infty \qquad y \to \infty$ vior: $x \to -\infty \qquad y \to -\infty$
- 5 th degree - end behav	$x \to \infty \qquad y \to \infty$
- 5 th degree - end behav - two imag	$x \to \infty \qquad y \to \infty$ vior: $x \to -\infty \qquad y \to -\infty$
 5th degree end behave two image one bound 	$\begin{array}{ccc} x \to \infty & y \to \infty \\ \text{vior:} & \\ x \to -\infty & y \to -\infty \\ \text{inary zeros} \end{array}$
 5th degree end behave two image one bound 36. True or False 	$x \to \infty \qquad y \to \infty$ vior: $x \to -\infty \qquad y \to -\infty$ inary zeros cing negative zero
 5th degree end behave two image one bounder 36. True or False a) An even degree 	$x \rightarrow \infty y \rightarrow \infty$ vior: $x \rightarrow -\infty y \rightarrow -\infty$ inary zeros cing negative zero : If False, explain why.
 5th degree end behave two image one bound 36. True or False a) An even degree b) Only polynom 	$x \to \infty y \to \infty$ vior: $x \to -\infty y \to -\infty$ inary zeros cing negative zero : If False, explain why. ee polynomial has a range of all real numbers.
 5th degree end behave two image one bound 36. True or False a) An even degree b) Only polynom c) A cubic polynom 	$x \rightarrow \infty y \rightarrow \infty$ vior: $x \rightarrow -\infty y \rightarrow -\infty$ inary zeros cing negative zero : If False, explain why. ee polynomial has a range of all real numbers. hials with a constant term of o will pass through the origin.
 5th degree end behave two image one bound 36. True or False a) An even degree b) Only polynom c) A cubic polynom d) Odd degree polynom 	$x \rightarrow \infty y \rightarrow \infty$ vior: $x \rightarrow -\infty y \rightarrow -\infty$ inary zeros cing negative zero : If False, explain why. ee polynomial has a range of all real numbers. hials with a constant term of o will pass through the origin. omials can five terms.

ANSWERS $3\overline{x^{11}}$ $2y^2$ 3. 10 4. 216 **2.** $\frac{1}{32y^3}$ 1. х 7. 5. 6. a. -x - 3a. $x^2 + x - 12$ a. $-x^6 + 27x^4 - 243x^2 + 729$ b. Degree: 1, Leading b. Degree: 2, Leading b. Degree: 6, Leading Coefficient: -1 Coefficient: 1 Coefficient: -1 c. Linear binomial c. 6th degree polynomial c. quadratic trinomial 8. 9. a. $-4x^2 - 8x + 1 - \frac{2x - 4}{9x^2}$ a. $2x^2 + 4x - \frac{37}{2} - \frac{37}{r} + \frac{13}{2r^2}$ 10. $x \to -\infty, f(x) \to -\infty$ $x \to \infty, f(x) \to \infty$ b. The answer to part a. is b. The answer to part a. is not a polynomial since the not a polynomial since the remainder term involves last two terms involve division by variables. division by variables. c. none c. none $x \to -\infty, f(x) \to \infty$ $x \to -\infty, f(x) \to \infty$ $x \to -\infty, f(x) \to -\infty$ 13. $x \to \infty$, $f(x) \to -\infty$ 11. $x \to \infty$, $f(x) \to \infty$ 12. $x \to \infty$, $f(x) \to -\infty$ 16. D 14. C 17. E 18. A 15. B 19. 20. 21. g(x) is a factor of f(x)22. g(x) is not a factor of f(x)23. x=-2, ±3*i* because $\frac{f(x)}{g(x)}$ yields a because $\frac{f(x)}{g(x)}$ does not yield remainder of o. a remainder of o. 26. x=0 multiplicity 4, $-\frac{1}{4}$, 25. $x = \pm \frac{2\sqrt{3}}{3}, \pm \frac{\sqrt{15}}{3}$ 24. x=0, $\pm i\sqrt{2}$ $1 \pm i\sqrt{3}$ 8 29. x = 2 ± *i*, -1, $\frac{3 \pm \sqrt{5}}{2}$ $2 -3 \pm \sqrt{17}$ 28.-3, 0, 1 27. X=

30. 2000 and 6000 t-shirts	31. A	32. $x^3 - 9x - 440 = 0$
33. a) $x-c$ is a factor of $f(x)$ b) $x-c$ is NOT a factor of $f(x)$	34. A quintic polynomial divided by a cubic polynomial will yield a quadratic. If both leading coefficients are positive the quotient will also have a positive leading coefficient. $x \rightarrow -\infty, f(x) \rightarrow \infty$ $x \rightarrow \infty, f(x) \rightarrow \infty$	35. (a possible sketch)

36.

a) False. Even degreed polynomials have the same end behavior so they will have a maximum or minimum y-value and a restricted range.

b) True.

c) False. A cubic polynomial can have at most four terms.

d) True. Odd degreed polynomials have the opposite end behavior and a range of all real numbers so there must be one real number, x, such that f(x)=0.

e) True.

f) True. (DUH!)