A2H: Chapter 2 Review

Ι. Simplify. Your answer should only contain positive exponents.

1.
$$2y^3 \cdot 3xy^3 \div 3x^2y^4$$

2. $\frac{3x^0y^2}{2x^{-1}4yx^2} \div \frac{(2x^{-4})^3}{2y^{-4}}$

Evaluate each polynomial using synthetic substitution. 11.

$$f(x) = x^{2} + 5x + 1 \qquad g(x) = 4x^{4} - 7x^{3} + 6x^{2} - 5 \qquad h(x) = 7 - x \qquad m(x) = 7x^{2}$$

3. $h(-3)$
4. $8g(2)$

Ш.

- a. Simplify each expression given the following polynomials. b. State the degree and leading coefficient, or state *why* the answer does not represent a polynomial. c. Classify your answer by degree and number of terms. If the expression
- does nót represent a pólynómial, do not classify.

$f(x) = 9 - x^2$	g(x) =	$= 4x^4 + 8x^3 - 37x^2 - 74x + 13$	h(x) = x - 3	$m(x) = 2x^2$
5. <i>h</i> – <i>f</i>	6. <i>f</i> ³	7. $\frac{f}{h}$	8. $\frac{g}{f}$	9. $\frac{g}{m}$

Describe the end behavior. Express your answer formally. IV.

10. $f(x) = x^3 + 3x^2 - 4x$ 11. $f(x) = x^4 - 3x^2 + 6x$ 13. $f(x) = -4x^3 - 4x^2 + 8$ 12. $f(x) = -2x^2 + 8x + 5$

Match each polynomial to its graph. ν.

VI. Determine if each graph is symmetric over the x-axis, y-axis, origin or y=x. Then state if each graph represents is even or odd function, if possible.

VII. Test each equation *algebraically* for x-axis, y-axis, origin or y=x symmetry. 22. xy = 1723. $3x^4 + 5x^2y^6 - 7y^8 = -9$

VIII. Determine *algebraically* if each function is even/odd or neither. 24. $f(x) = x^5 - 4x^3 + x^2 - 4$ 25. $g(x) = 16x^4 - 8x^2 + 1$

IX. Sketch the graph of each polynomial function. 26. $f(x) = x^5 - 4x^3 + x^2 - 4$ 27. $g(x) = 16x^4 - 8x^2 + 1$

X. Find the average rate of change for each polynomial over the indicated interval.

28. $f(x) = 9 - x^3$, [-3, -2] 29. g(x) = 5, [1000, 2000]

XI. Determine if g(x) is a factor of f(x). Explain your reasoning. 30. $f(x) = x^4 - 1$, $g(x) = x^2 + 1$ 31. $f(x) = x^3 - 2x^2 + x - 5$, g(x) = x - 3

XII. CALCUALTOR – Round all answers to three decimal places.

32. $f(x) = \frac{1}{2}x^4 + x^2 - 6x - 5$

- a) How many turning points does the function have?
- b) Find the real zero(s).
- c) How many zeros are imaginary? How do you know?
- d) Determine the point(s), if any, at which the function has a relative maximum.
- e) Determine the point(s), if any, at which the function has a relative minimum.
- f) Determine the domain on which the function is increasing. Use SET notation.
- g) Determine the domain on which the function is decreasing. Use SET notation.
- h) Determine the domain on which the function is positive. Use SET notation.
- i) Determine the domain on which the function is negative. Use SET notation.
- j) State the domain and range in *SET* notation.

ANSWERS

1.
$$\frac{2y^2}{x}$$

2. $\frac{3x^{11}}{32y^3}$

- 3. 10
 4. 216
- 5.
- a. $x^2 + x 12$
- b. Degree: 2, Leading Coefficient: 1
- c. quadratic trinomial
- 6.

a. $-x^6 + 27x^4 - 243x^2 + 729$

- b. Degree: 6, Leading Coefficient: -1
- c. 6th degree polynomial
- 7.
- a. -x 3
- b. Degree: 1, Leading Coefficient: -1
- c. Linear binomial

8.

a.
$$-4x^2 - 8x + 1 - \frac{2x - 4}{9 - x^2}$$

- b. The answer to part a. is not a polynomial since the remainder term involves division by variables.
- c. none

9.

- a. $2x^2 + 4x \frac{37}{2} \frac{37}{x} + \frac{13}{x^2}$
- b. The answer to part a. is not a polynomial since the last two terms involve division by variables.
- c. none

10.
$$x \to -\infty, f(x) \to -\infty$$

 $x \to \infty, f(x) \to \infty$

11.
$$x \to -\infty, f(x) \to \infty$$

 $x \to \infty, f(x) \to \infty$

- 12. $x \to -\infty, f(x) \to -\infty$ $x \to \infty, f(x) \to -\infty$ 13. $x \to -\infty, f(x) \to \infty$ $x \to \infty, f(x) \to -\infty$
- 14. C
- 15. B
- 16. D
- 17. E
- 18. A
- 19. x-axis, y-axis; neither even nor odd
- 20. origin, y=x; odd
- 21. no symmetry; neither even nor odd
- 22. origin, y=x
- 23. x-axis, y-axis
- 24. neither, $f(-x) \neq f(x)$ or f(-x)
- 25. even, f(-x) = f(x)

31. g(x) is not a factor of f(x) because $\frac{f(x)}{g(x)}$ does not yield a remainder of o.

- 32.
 - a. 1
 - b. x=-7.723, 2.279
 - c. 2 zeros are imaginary. There are 2 real zeros because there are two x-intercepts. Since each zero crosses through the x-axis the multiplicity of these zeros must be odd and 1. In addition the degree is 4, hence there are four zeros. If two are real then the other 2 zeros must be imaginary.
- d. None
- e. (1.213, -9.724)
- f. $\{x | x > 1.213\}$
- g. $\{x | x < 1.213\}$
- h. $\{x | x < -7.723 \text{ or } x > 2.279\}$
- i. $\{x \mid -7.723 < x < 2.279\}$
- j. $\{x | x \in R\}, \{y | y \ge -9.724\}$