AP Calculus AB: Ch 3 Free Response Packet

1. No Calculator

x	f(x)	f'(x)	g(x)	g '(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.

2. No Calculator

Let f be the function given by $f(x) = 3x^4 + x^3 - 21x^2$.

- (a) Write an equation of the line tangent to the graph of f at the point (2, -28).
- (b) Find the absolute minimum value of f. Show the analysis that leads to your conclusion.
- (c) Find the x-coordinate of each point of inflection on the graph of f. Show the analysis that leads to your conclusion.

3. No Calculator

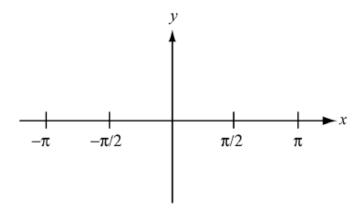
Let f be the function given by $f(x) = x^3 - 7x + 6$.

- (a) Find the zeros of f.
- (b) Write an equation of the line tangent to the graph of f at x = -1.
- (c) Find the number c that satisfies the conclusion of the Mean Value Theorem for f on the closed interval [1,3].

4. No Calculator

Given the function f defined by $f(x) = \cos x - \cos^2 x$ for $-\pi \le x \le \pi$.

- (a) Find the x-intercepts of the graph of f.
- (b) Find the x- and y-coordinates of all relative maximum points of f. Justify your answer.
- (c) Find the intervals on which the graph of f is increasing.
- (d) Using the information found in parts (a), (b), and (c), sketch the graph of f on the axes provided.



5. No Calculator

Let f be the function defined for $\frac{\pi}{6} \le x \le \frac{5\pi}{6}$ by $f(x) = x + \sin^2 x$.

- (a) Find all values of x for which f'(x) = 1.
- (b) Find the x-coordinates of <u>all</u> minimum points of f. Justify your answer.
- (c) Find the x-coordinates of <u>all</u> inflection points of f. Justify your answer.

6. No Calculator

Let f be the function defined by $y = f(x) = x^3 + ax^2 + bx + c$ and having the following properties.

- (i) The graph of f has a point of inflection at (0,-2).
- (ii) The average (mean) value of f(x) on the closed interval [0,2] is -3.
- (a) Determine the values of a, b, and c.
- (b) Determine the value of x that satisfies the conclusion of the Mean Value Theorem for f on the closed interval [0,3].

7. No Calculator

Let f be the function defined by $f(x) = 3x^5 - 5x^3 + 2$.

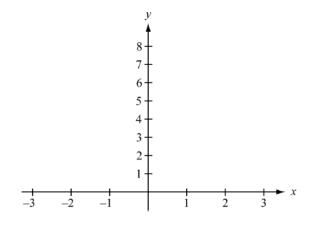
- (a) On what intervals is f increasing?
- (b) On what intervals is the graph of f concave upward?
- (c) Write the equation of each horizontal tangent line to the graph of f.

8. No Calculator

A function f is continuous on the closed interval [-3, 3] such that f(-3) = 4 and f(3) = 1. The functions f' and f'' have the properties given in the table below.

x	-3 < x < -1	x = -1	-1 < x < 1	x = 1	1 < x < 3
<i>f</i> ′(<i>x</i>)	Positive	Fails to exist	Negative	0	Negative
f"(x)	Positive	Fails to exist	Positive	0	Negative

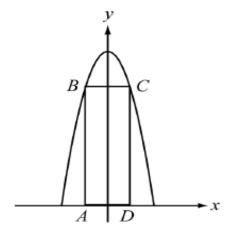
- (a) What are the x-coordinates of all absolute maximum and absolute minimum points of f on the interval [-3, 3]? Justify your answer.
- (b) What are the x-coordinates of all points of inflection of f on the interval [-3, 3]? Justify your answer.
- (c) On the axes provided, sketch a graph that satisfies the given properties of f.



No Calculator

Find the maximum volume of a box that can be made by cutting out squares from the corners of an 8-inch by 15-inch rectangular sheet of cardboard and folding up the sides. Justify your answer.

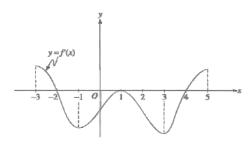
10. No Calculator



A rectangle ABCD with sides parallel to the coordinate axes is inscribed in the region enclosed by the graph of $y = -4x^2 + 4$ and the x-axis as shown in the figure above.

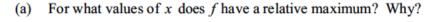
- (a) Find the x- and y-coordinates of C so that the area of rectangle ABCD is a maximum.
- (b) The point C moves along the curve with its x-coordinate increasing at the constant rate of 2 units per second. Find the rate of change of the area of rectangle ABCD when $x = \frac{1}{2}$.

11. No Calculator

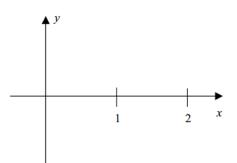


Note: This is the graph of the derivative of f , not the graph of f .

The figure above shows the graph of f', the derivative of a function f. The domai is the set of all real numbers x such that -3 < x < 5.



- (b) For what values of x does f have a relative minimum? Why?
- (c) On what intervals is the graph of f concave upward? Use f' to justify your answer.
- (d) Suppose that f(1) = 0. In the xy-plane provided, draw a sketch that shows the general shape of the graph of the function f on the open interval 0 < x < 2.



12. No Calculator

A particle moves along a line so that at any time t its position is given by $x(t) = 2\pi t + \cos 2\pi t$.

- (a) Find the velocity at time t.
- (b) Find the acceleration at time t.
- (c) What are all values of t, $0 \le t \le 3$, for which the particle is at rest?
- (d) What is the maximum velocity?

13. No Calculator

Let f be the function defined by $f(x) = 12x^{\frac{2}{3}} - 4x$.

- (a) Find the intervals on which f is increasing.
- (b) Find the x- and y-coordinates of all relative maximum points.
- (c) Find the x- and y-coordinates of all relative minimum points.
- (d) Find the intervals on which f is concave downward.
- (e) Using the information found in parts (a), (b), (c), and (d), sketch the graph of f on the axes provided.

14.

Let $P(x) = x^4 + ax^3 + bx^2 + cx + d$. The graph of y = P(x) is symmetric with respect to the y-axis, has a relative maximum at (0,1), and an absolute minimum at (q,-3).

- (a) Determine the values of a, b, c, and d, and using these values write an expression for P(x).
- (b) Find all possible values of q.

15.

Let g and h be any two twice-differentiable functions that are defined for all real numbers and that satisfy the following properties for all x:

(i)
$$(g(x))^2 + (h(x))^2 = 1$$

(ii)
$$g'(x) = (h(x))^2$$

(iii)
$$h(x) > 0$$

(iv)
$$g(0) = 0$$

- (a) Justify that h'(x) = -g(x)h(x) for all x.
- (b) Justify that h has a relative maximum at x = 0.
- (c) Justify that the graph of g has a point of inflection at x = 0.

A particle moves along the x-axis so that at any time t > 0 its velocity is given by $v(t) = t \ln t - t$. At time t = 1, the position of the particle is x(1) = 6.

- (a) Write an expression for the acceleration of the particle.
- (b) For what values of t is the particle moving to the right?
- (c) What is the minimum velocity of the particle? Show the analysis that leads to your conclusion.

17.

Given the function f defined by $f(x) = \ln(x^2 - 9)$.

- (a) Describe the symmetry of the graph of f.
- (b) Find the domain of f.
- (c) Find all values of x such that f(x) = 0.
- (d) Write a formula for $f^{-1}(x)$, the inverse function of f, for x > 3.

18.

A particle moves along the x-axis in such a way that at time t > 0 its position coordinate is $x = \sin(e^t)$.

- (a) Find the velocity and acceleration of the particle at time t.
- (b) At what time does the particle first have zero velocity?
- (c) What is the acceleration of the particle at the time determined in part (b)?

19.

A function f is defined by $f(x) = xe^{-2x}$ with domain $0 \le x \le 10$.

- (a) Find all values of x for which the graph of f is increasing and all values of x for which the graph is decreasing.
- (b) Give the x- and y-coordinates of all absolute maximum and minimum points on the graph of f. Justify your answers.

A particle moves on the x-axis so that its position at any time $t \ge 0$ is given by $x(t) = 2te^{-t}$.

- (a) Find the acceleration of the particle at t = 0.
- (b) Find the velocity of the particle when its acceleration is 0.

ANSWERS

1.

(a) h(1) = f(g(1)) - 6 = f(2) - 6 = 9 - 6 = 3 h(3) = f(g(3)) - 6 = f(4) - 6 = -1 - 6 = -7Since h(3) < -5 < h(1) and h is continuous, by the Intermediate Value Theorem, there exists a value r, 1 < r < 3, such that h(r) = -5.

(b) $\frac{h(3) - h(1)}{3 - 1} = \frac{-7 - 3}{3 - 1} = -5$

Since h is continuous and differentiable, by the Mean Value Theorem, there exists a value c, 1 < c < 3, such that h'(c) = -5.

2.

(a) $f'(x)=12x^3+3x^2-42x$ f'(2)=24 y+28=24(x-2)or y=24x-76

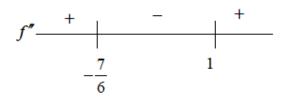
(b)
$$12x^3 + 3x^2 - 42x = 0$$

 $3x(4x^2 + x - 14) = 0$
 $3x(4x - 7)(x + 2) = 0$
 $x = 0, x = \frac{7}{4}, x = -2$

Absolute min is - 44

(c)
$$f''(x) = 36x^2 + 6x - 42$$

= $6(6x^2 + x - 7)$
= $6(6x + 7)(x - 1)$
Zeros at $x = -\frac{7}{6}$, $x = 1$



The x coordinates of the points of inflection are $x = -\frac{7}{6}$ and x = 1

(a)
$$f(x) = x^3 - 7x + 6$$

 $= (x-1)(x-2)(x+3)$
 $x = 1, x = 2, x = -3$
(b) $f'(x) = 3x^2 - 7$
 $f'(-1) = -4, f(-1) = 12$
 $y - 12 = -4(x+1)$
or
 $4x + y = 8$
or
 $y = -4x + 8$
(c) $\frac{f(3) - f(1)}{3 - 1} = \frac{12 - 0}{2} = 6$
 $3c^2 - 7 = f'(c) = 6$
 $c = \sqrt{\frac{13}{3}}$

4.

(a)
$$f(x) = \cos x \cdot (1 - \cos x)$$

Either $\cos x = 0$ or $1 - \cos x = 0$, so the x-intercepts are $x = -\frac{\pi}{2}$, $x = \frac{\pi}{2}$, and x = 0.

(b)
$$f'(x) = -\sin x + 2\sin x \cos x$$

 $0 = \sin x \cdot (-1 + 2\cos x)$

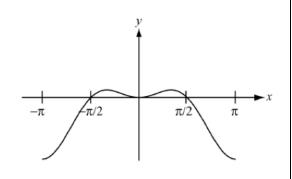
Either $\sin x = 0$ or $\cos x = \frac{1}{2}$, so the candidates are $x = \pm \pi$, x = 0, and $x = \pm \frac{\pi}{3}$.

The relative maximum points are at $\left(\pm \frac{\pi}{3}, \frac{1}{4}\right)$.

Justification:

(i)
$$f''(x) = -\cos x + 2\cos 2x$$

 $f''(\pm \pi) = 3 \Rightarrow \text{ relative minimum}$
 $f''(0) = 1 \Rightarrow \text{ relative minimum}$
 $f''\left(\pm \frac{\pi}{3}\right) = -\frac{3}{2} \Rightarrow \text{ relative maximum}$



(c) Graph of f increases on the intervals $-\pi < x < -\frac{\pi}{3}$ and $0 < x < \frac{\pi}{3}$.

 $f'(x) = 1 + 2\sin x \cos x = 1 + \sin 2x$

 $x = \frac{\pi}{2}$ is the only solution in the interval $\frac{\pi}{6} \le x \le \frac{5\pi}{6}$.

 $f'(x) = 1 + \sin 2x = 0$, so $x = \frac{3\pi}{4}$

The minimum occurs at the critical point or at the endpoints.

critical point:
$$f\left(\frac{3\pi}{4}\right) = \frac{3\pi}{4} + \frac{1}{2} = 2.856$$

endpoints: $f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} + \frac{1}{4} = 0.774$

$$f\left(\frac{5\pi}{6}\right) = \frac{5\pi}{6} + \frac{1}{4} = 2.868$$

Therefore the minimum is at $x = \frac{\pi}{6}$.

(c) $f''(x) = 2\cos 2x$

$$x = \frac{\pi}{4}, \frac{3\pi}{4}$$

$$f''$$
 + - + $\pi/6$ $\pi/4$ $3\pi/4$ $5\pi/6$

Therefore the inflection points occur at $x = \frac{\pi}{4}$ and $x = \frac{3\pi}{4}$ since this is where f''changes sign from positive to negative and from negative to positive, respectively.

6.

(a)
$$-2 = f(0) = c$$

$$f'(x) = 3x^2 + 2ax + b$$

$$f''(x) = 6x + 2a$$

$$0 = f''(0) = 2a$$
, so $a = 0$

$$f(x) = x^3 + bx - 2$$

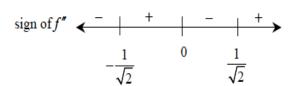
$$-3 = \frac{1}{2-0} \int_0^2 f(x) \, dx = \frac{1}{2} \left(\frac{x^4}{4} + \frac{bx^2}{2} - 2x \right) \Big|_0^2 = \frac{1}{2} (4 + 2b - 4) = b$$

So
$$a = 0$$
, $b = -3$, and $c = -2$.

(a)
$$f'(x) = 15x^4 - 15x^2 = 15x^2(x^2 - 1)$$

Answer: f is increasing on the intervals $(-\infty, -1]$ and $[1, \infty)$

(b)
$$f''(x) = 60x^3 - 30x = 30x(2x^2 - 1)$$



Answer: f is concave upward on $\left(-\frac{1}{\sqrt{2}}, 0\right)$ and on $\left(\frac{1}{\sqrt{2}}, \infty\right)$

(b) By the Mean Value Theorem, there is an x satisfying
$$0 < x < 3$$
 such that (c) $f'(x) = 0$ when $x = -1, 0, 1$

(c)
$$f'(x) = 0$$
 when $x = -1, 0, 1$

$$x = -1 \Rightarrow f(x) = 4$$
; $y = 4$

$$f(0)=2; y=2$$

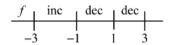
$$f(1) = 0; y = 0$$

$$f'(x) = \frac{f(3) - f(0)}{3 - 0}$$

$$3x^2 - 3 = \frac{16 - (-2)}{3} = 6$$

$$x^2 = 3 \Rightarrow x = \sqrt{3}$$

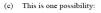
The absolute maximum occurs at x = -1 because f is increasing on the interval (a) [-3,-1] and decreasing on the interval [-1,3].

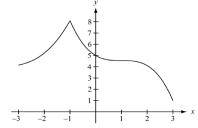


The absolute minimum must occur at x = 1 (the other critical point) or at an endpoint. However, f is decreasing on the interval [-1,3]. Therefore the absolute minimum is at an endpoint. Since f(-3) = 4 > 1 = f(3), the absolute minimum is at x = 3.

There is an inflection point at x = 1 because:

the graph of f changes from concave up to concave down at x = 1





$$V(x) = x(8-2x)(15-2x) = 4x^3 - 46x^2 + 120x$$

$$V'(x) = 12x^2 - 92x + 120$$

$$3x^2 - 23x + 30 = (3x - 5)(x - 6) = 0$$

$$x = \frac{5}{3}, x = 6$$

Since we must have $0 \le x \le 4$, we pick $x = \frac{5}{3}$.

$$V_{\text{max}} = \frac{5}{3} \left(8 - \frac{10}{3} \right) \left(15 - \frac{10}{3} \right) = \frac{5}{3} \cdot \frac{14}{3} \cdot \frac{35}{3} = \frac{2450}{27} = 90 \frac{20}{27} \approx 90.7$$

 $V''\left(\frac{5}{3}\right) < 0$ and so there is a relative maximum at $x = \frac{5}{3}$. There is only one critic

point in the domain $0 \le x \le 4$, so there is an absolute maximum at $x = \frac{5}{3}$.

10

(a)
$$A(x) = 2x(-4x^2 + 4) = 8(x - x^3)$$

$$\frac{dA}{dx} = 8(1 - 3x^2)$$

$$\frac{dA}{dx} = 0$$
 when $x = \frac{1}{\sqrt{3}}$

The maximum area occurs when $x = \frac{1}{\sqrt{3}}$ and $y = 4\left(1 - \frac{1}{3}\right) = \frac{8}{3}$

(b)
$$A(x) = 8(x-x^3)$$

$$\frac{dA}{dt} = 8(1 - 3x^2) \frac{dx}{dt}$$

When
$$x = \frac{1}{2}$$
 and $\frac{dx}{dt} = 2$, $\frac{dA}{dt} = 8\left(1 - 3 \cdot \frac{1}{4}\right)2 = 4$.

11.

(a) x = -2

f'(x) changes from positive to negative at x = -2

or

f is increasing to the left of x = -2 and decreasing to the right of x = -2

(b) x = 4

f'(x) changes from negative to positive at x = 4

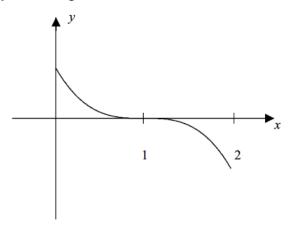
or

f is decreasing to the left of x = 4 and increasing to the right of x = 4

(c) (-1,1) and (3,5)

f' is increasing on these intervals.

(d)



12.

(a)
$$v(t) = 2\pi - 2\pi \sin 2\pi t = 2\pi (1 - \sin 2\pi t)$$

(b) $a(t) = -4\pi^2 \cos 2\pi t$

(c)
$$v(t) = 2\pi(1 - \sin 2\pi t) = 0$$

 $\sin 2\pi t = 1$

The particle is at rest for $t = \frac{1}{4}, \frac{5}{4}, \frac{9}{4}$.

(d)
$$a(t) = -4\pi^2 \cos 2\pi t = 0$$

$$t = \frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \cdots$$

The maximum velocity is $v\left(\frac{3}{4}\right) = 4\pi$.

or

Since $\sin 2\pi t = -1$ is the minimum of $\sin 2\pi t$ the maximum of v(t) is $2\pi (1-(-1)) = 4\pi$.

(a)
$$f(x) = 12x^{2/3} - 4x$$
; $f'(x) = 8x^{-1/3} - 4$

$$(8x^{-1/3} - 4) > 0, x > 0 \Rightarrow x < 8$$

$$(8x^{-1/3} - 4) > 0$$
, $x < 0 \Rightarrow$ no x satisfies this

01

Critical numbers: x = 8, x = 0

Therefore f is increasing on the interval 0 < x < 8.

(b)
$$2^{\text{nd}}$$
 Derivative Test: $f''(x) = -\frac{8}{3}x^{-4/3}$

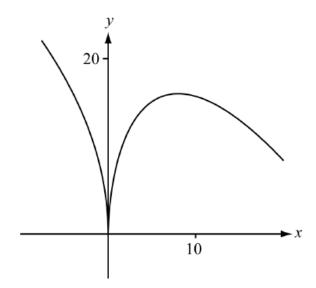
$$f''(8) < 0 \Rightarrow$$
 relative maximum at (8,16)

(c) The 2^{nd} Derivative Test cannot be used at x = 0 where the second derivative is undefined. Since f'(x) < 0 for x just less than 0, and f'(x) > 0 for x just greater than 0, there is a relative minimum at (0,0).

(d)
$$f''(x) = -\frac{8}{3}x^{-4/3} < 0 \text{ if } x \neq 0$$

The graph of f is concave down on $(-\infty, 0)$ and $(0, +\infty)$.

(e)



14.

a)
$$P(x) = x^4 - 4x^2 + 1$$

b)
$$q = \pm \sqrt{2}$$

15.

(a) 2g(x)g'(x) + 2h(x)h'(x) = 0 from differentiating both sides of (i)

$$g(x)(h(x))^2 + h(x)h'(x) = 0$$
 from (ii)

Since $h(x) \neq 0$ by (iii), we must have g(x)h(x) + h'(x) = 0.

Therefore h'(x) = -g(x)h(x)

(b) Since g(0) = 0, h'(0) = -g(0)h(0) = 0.

$$h''(x) = -g(x)h'(x) - g'(x)h(x)$$

$$h''(0) = -g(0)h'(0) - g'(0)h(0) = 0 - h(0)^2h(0) = -h(0)^3 < 0$$
 since $h(x) > 0$ for all x.

Therefore h has a relative maximum at x = 0.

Alternatively, since $g'(x) = (h(x))^2$, g is an increasing function. Since g(0) = 0, we must have that g(x) < 0 for x < 0 and g(x) > 0 for x > 0. Now h'(x) = -g(x)h(x) and h(x) > 0. Therefore h'(x) > 0 for x < 0 and h'(x) < 0 for x > 0. Hence h has a relative maximum at x = 0.

(c) $g''(x) = 2h(x)h'(x) = -2g(x)(h(x))^2$. Therefore g''(x) changes sign at x = 0 because $h(x) \neq 0$ and g(x) changes sign at x = 0 (see part (b)). This implies that the graph of g has a point of inflection at x = 0.

16.

(a)
$$a(t) = v'(t) = \ln t + t \cdot \frac{1}{t} - 1 = \ln t$$

(b)
$$v(t) = t \ln t - t > 0$$

 $t(\ln t - 1) > 0$
 $t > e$

(c)
$$v'(t) = \ln t = 0$$

 $t = 1$

$$v' - 0 + 0$$
 0
 1

minimum velocity is v(1) = -1

(a)
$$f(-x) = \ln((-x)^2 - 9) = \ln(x^2 - 9) = f(x)$$

Therefore the graph of f is symmetric with respect to the y-axis.

- (b) Since we need $x^2 9 > 0$, the domain of f is the set $\{x \mid x < -3 \text{ or } x > 3\}$
- (c) f(x) = 0 when $x^2 9 = 1$. This happens for $x = \pm \sqrt{10}$.
- (d) Method 1:

$$f(x) = \ln(x^2 - 9) \Rightarrow x^2 - 9 = e^{f(x)} = e^y$$

Since
$$x > 3$$
, $x = \sqrt{e^y + 9}$.

Hence
$$f^{-1}(x) = \sqrt{e^x + 9}$$
.

18.

(a)
$$x = \sin(e^t)$$

$$v = \frac{dx}{dt} = e^t \cos(e^t)$$

$$a = \frac{dv}{dt} = e^t(\cos(e^t) - e^t\sin(e^t))$$

(b) v(t) = 0 when $\cos(e^t) = 0$. Hence $e^t = \frac{\pi}{2}$ gives the first time when the velocity is

zero, and so
$$t = \ln \frac{\pi}{2}$$
.

(c)
$$a\left(\ln\frac{\pi}{2}\right) = \frac{\pi}{2}\left(\cos\frac{\pi}{2} - \frac{\pi}{2}\sin\frac{\pi}{2}\right) = -\frac{\pi^2}{4}$$

19.

a. increasing on $[0, \frac{1}{2}]$

decreasing on [½, 10]

b. Abs max:
$$\left(\frac{1}{2}, \frac{1}{2e}\right)$$

20.

b.
$$\frac{-2}{e^2}$$