

- Application of the Derivative: 5 ope of tangent line - Rate of Change (definition): Change in y) + change in X	<u>Ay</u>
Examples:	

When you are asked to find the rate of change, you are finding the slope.

Find the rate of change of $f(t) = (t^2 + 1)^3$ at t = 1

- Rectilinear Motion Problems – When we talk about these types of problems, we often talk about three types of functions 1. Notation: $x(+)$, $z(+)$.	
feet Application(s): find height at t= 2 sec, max height	_
2. Velocity: (+) < (+), V(+)	7
feet/sec. Notation: X'(+), S'(+), V(+)	
Application(s): Velocity at t=	_
velocity at max height	-
3. <u>Mcceleration</u> 1 2 Notation: <u>X"(+)</u> , S"(+), V'(+), a(+)	.
feet/sec + Application(s): find acceleration at t=2	-

Ex 3: At time t=0 seconds a diver jumps from a platform diving board that is 32 feet above the water. The position of the diver is given by $s(t) = -16t^2 + 16t + 32$. a) When does the diver hit the water?

height of

water = 0

$$S(t)=0$$

b) What is the diver's velocity at impact

$$5'(+) = -32++16$$

 $5'(a) = -64+16$
 $=-48$ ft/sec

- Average Ve	elocity vs. Inst Average \ Slopp Formula:	e between 2 p	y) + (change in sints	XX) AX
		neous Velocity: Veloc	ty at a giv	en time
	Formula:	v(a) =		
Averag	e	V(b)=	Instantan	eous Velocity
00.00				
4	2			a
Sime of	secont			1

- Speed:				
- Rest: $\sqrt{(+)} = 0$				
- Left and Right Motion: V(+) < O (negative)				
- Right: V(+)>0 (Positive)				
-Changes Direction: When VC+) changes signs				

Ex 4: A billiard ball is dropped from a height of 100 ft, its height s at time t is given by the position function $s(t) = -16t^2 + 100$, where s is measured in feet and t is measured in seconds.

a) Find the average velocity over time interval
$$[1, 2]$$
.

$$(1, 5(1)) (2, 5(2)) (3(2)) (3(2) - 5(1)) = 3(2 - 84)$$

$$(1, 84) (2, 36) (2 - 1) = -48 + 15ec$$
b) Find the Instantaneous velocity at the endpoints of the interval.

$$5'(1) = -32$$
 ft/sec $5'(+) = -32$ †
 $5'(2) = -64$ ft/sec

c) Find the speed at the endpoints of the interval.

$$|s'(1)| = 32 \text{ fH/sec}$$

 $|s'(2)| = 64 \text{ fH/sec}$

Ex 5: A particle starts at time t=0 and moves along the x-axis so that its position at any time $t\ge 0$ is given by $x(t)=(t-1)^3(2t-3)$.

a) Find the velocity of the particle at any time $t \ge 0$. Simplify.

$$\chi'(+) = (t-1)^{3} \cdot 2 + (2t-3) \cdot 3(t-1)^{3} \cdot 1$$

$$= (t-1)^{2} (2(t-1) + 3(2t-3)) = (t-1)^{2} (8t-1)$$
b) Determine the values of t for which the particle is at rest.

 $0 = (t-1)^{2}(8t-11)$ t = 1, 11/8

c) Determine the values of t for which the particle is moving to the left. JYA.

 $\frac{E^{-}+-++}{}$ \times '(+)

Moving to the left on (0, 1) U (1, 11/8) because x'(t) < 0 on these intervals

d) Moving to the right (11/8, inf) because x'(t) > 0 on this interval

e) t = 11/8 sec because x'(t) changes signs at this time