

Volume: The Disk Method

- Find the volume of a solid of revolution using the disk method.
- Find the volume of a solid of revolution using the washer method.

Volume of a disk: $\pi R^2 w$

Disk Method $V = \pi R^{2} h$ $\pi S R^{2} dx$ $\alpha R^{2} = (funct - axis)$

$$(3-7)^2 = (7-3)^2$$

$$(funct-axis)^2 = (axis-funct.)^2$$

Volume by Revolution (Disk Method)

Example 1 Determine the volume of the solid obtained by rotating the region bounded by $y = x^2 - 4x + 5$,

$$\int y = \sqrt{x} \quad x = 4 \quad \pi \int (\sqrt{x} - 0)^2 dx$$

$$y = 0$$

$$\text{revolve} : x - \alpha x = 5$$

$$\pi \int_0^4 x \, dx = \frac{\pi x^2}{2} \Big|_0^4$$

$$= 8\pi$$

When rotating around a horizontal axis, integrate with respect to x

(2)
$$y = \sqrt{x}$$
 $x = 4$ $\pi \int_{(y^2 - 4)^2}^{(y^2 - 4)^2} dy$
revolve: $x = 4$ $y = \sqrt{x}$ $y = \sqrt{x}$ $y = x$

Rotating around a vertical axis: integrate with respect to y

3
$$y = \chi^2, \chi = 2$$

$$y = 0$$

$$cotate: \chi = 2$$

$$disk$$

$$\chi's$$

(3)
$$y = \chi^2$$
, $x = 2$

$$y = 0$$

$$y = 0$$

$$x = 2$$

$$R^2 - \Gamma^2$$
(puter-axis) - (inner-axis)

The state of th

(3)
$$y = \chi^{2}, y = D, \chi = 3$$
 Set up only rotate: $y = -1$

($\chi^{2} = -1$

($\chi^{$

4
$$y=x^{2}, x=3$$

 $y=0$
 $y=0$

$$T = \int_{0}^{1} (\sqrt{x} - 0)^{2} - (\sqrt{x} - 0)^{2} dx$$

$$T = \int_{0}^{1} (\sqrt{x} - \sqrt{x})^{2} dx$$

$$T = \int_{0}^{1} (\sqrt{x} - \sqrt{x})^{2} dx$$

Volume by Revolution (Washer Method)

$$V = \pi \int_{a}^{b} \left[R(x) \right]^{2} - \left[r(x) \right]^{2} dx$$

e by Revolution
er Method)
$$V = \pi \int_{a}^{b} [R(x)]^{2} - [r(x)]^{2} dx$$
$$V = \pi \int_{a}^{b} [(outer - axis)^{2} - (inner - axis)^{2}] dx$$

Example 2 Determine the volume of the solid obtained by rotating the portion of the region bounded by $y = \sqrt[3]{x}$ and $y = \frac{x}{4}$ that lies in the first quadrant about the y-axis.

