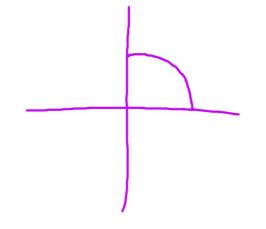


29.)
$$f(x) = \sqrt{4-x^2}$$
 [0,2]

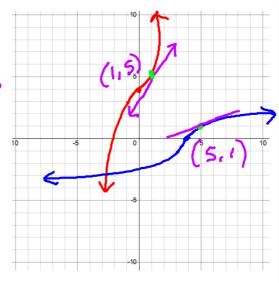


$$X = \sqrt{4 - y^{2}}$$
 $X^{2} = 4 - y^{2}$
 $Y^{2} = 4 - x^{2}$
 $Y^{3} = \sqrt{4 - x^{2}}$

5.3 Inverse Functions
$$f(x) = \chi^{3} + 4 \qquad f^{-1}(x) = \sqrt[3]{x - 4}$$

$$f'(x) = 3x^{2} \qquad (f^{-1})'(x) = \frac{1}{3}(x - 4)$$

$$f'(1) = 3 \qquad (f^{-1})'(5) = \frac{1}{3}$$



(1)
$$f(x) = 2x^3 + 3x$$
 $(f^{-1})'(5) = \frac{1}{4}$

Verify the function is 1:1 (monotonic: a function that is always

increasing or always decreasing)
$$f'(x) = 6x^{2} + 3$$

$$0 = 6x^{2} + 3$$

$$f(x) \text{ is monotomic because } f'>0$$

Find the derivative of the inverse at x = 5.

$$5 = 2x^{3} + 3x$$

$$J = x$$

$$f'(x) = 6x^{2} + 3$$

$$f'(1) = 9 - 7(f')'(5) = 9$$

THEOREM 5.9 THE DERIVATIVE OF AN INVERSE FUNCTION

Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which $f'(g(x)) \neq 0$. Moreover,

$$g'(x) = \frac{1}{f'(g(x))}, \quad f'(g(x)) \neq 0.$$

(2)
$$f(x) = \chi^3 - \frac{4}{x}$$
 D: $(0, \infty)$

f(x) and g(x) are inverses. Find g'(6) $6 = x^3 - \frac{4}{x}$

$$6 = x^{3} - \frac{4}{x}$$

 $2 = x$
 $f'(x) = 3x^{2} + \frac{4}{x^{2}}$
 $f'(x) = 13$



3) Let f be a differentiable function with f(3) = 15, f'(3) = -8, f'(6) = -2, f(6) = 3. The function g is differentiable and $g(x) = f^{-1}(x)$. What is the value f: (6,3) of g'(3)?

- c) 1/6
- d) 1/3
- e) not possible

#	4
"	

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

$$g^{-1}:(2, 1)$$

 $g:(1, 2)$
 $g'(1) = 5$

$$(2,1) m = \frac{1}{5}$$

 $y-1 = \frac{1}{5}(x-2)$