4.3

Riemann Sums and Definite Integrals

indefinite

 $\int (X+1)qX$

answer is an expression

definite (x+1)dx

answer is a number

THEOREM 4.5 THE DEFINITE INTEGRAL AS THE AREA OF A REGION

If f is continuous and nonnegative on the closed interval [a, b], then the area of the region bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b is given by

Area =
$$\int_a^b f(x) dx$$
.

Sketch, then find the value of the definite integral.

#3
$$\begin{cases} 1 \\ 1 \\ 1 \\ 1 \end{cases}$$
 $\begin{cases} 1 \\ 1 \\ 1 \end{cases}$ $\begin{cases} 1 \end{cases}$ $\begin{cases} 1 \\ 1 \end{cases}$ $\begin{cases} 1 \end{cases}$ $\begin{cases} 1 \\ 1 \end{cases}$ $\begin{cases} 1 \end{cases}$ $\begin{cases} 1 \end{cases}$ $\begin{cases} 1 \\ 1 \end{cases}$ $\begin{cases} 1 \end{cases}$ $\begin{cases} 1 \\ 1 \end{cases}$ $\begin{cases} 1 \end{cases}$ $\begin{cases} 1 \end{cases}$

#4
$$\int_{12}^{2} (|x|+2) dx$$

 -2
 $2(\frac{1}{2}h(b_{i}+b_{2}))$
 $2(2+4)$
 12

#5
$$\int_{-2}^{2} \sqrt{4 - x^{2}} dx$$

$$y^{2} + y^{2} = 4$$

$$y = \pm \sqrt{4 - x^{2}}$$

$$\frac{1}{2} \pi r^{2} = \frac{1}{2} \pi (2)^{2}$$

$$= 2\pi$$

Set up a definite integral that would represent the area of the region. Do not evaluate.

#6

#7

DEFINITIONS OF TWO SPECIAL DEFINITE INTEGRALS

- 1. If f is defined at x = a, then we define $\int_a^a f(x) dx = 0$.
- 2. If f is integrable on [a, b], then we define $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

THEOREM 4.6 ADDITIVE INTERVAL PROPERTY

If f is integrable on the three closed intervals determined by a, b, and c, then

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.$$

THEOREM 4.7 PROPERTIES OF DEFINITE INTEGRALS

If f and g are integrable on [a, b] and k is a constant, then the functions kf and $f \pm g$ are integrable on [a, b], and

1.
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

2.
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$
.

#1

Given
$$\int_{-1}^{1} f(x) dx = 0$$
 and $\int_{0}^{1} f(x) dx = 5$, evaluate

(a)
$$\int_{-1}^{0} f(x) dx.$$

(a)
$$\int_{-1}^{0} f(x) dx$$
.
(b) $\int_{0}^{1} f(x) dx - \int_{-1}^{0} f(x) dx$.
(c) $\int_{-1}^{1} 3f(x) dx$.
(d) $\int_{0}^{1} 3f(x) dx$.

(c)
$$\int_{-1}^{1} 3f(x) dx$$
.

(d)
$$\int_0^1 3f(x) dx.$$

#2

Evaluate $\int_{1}^{3} (-x^2 + 4x - 3) dx$ using each of the following values.

$$\int_{1}^{3} x^{2} dx = \frac{26}{3}, \qquad \int_{1}^{3} x dx = 4, \qquad \int_{1}^{3} dx = 2$$