#5 A 5 meter long ladder is leaning against the side of a house. The foot of the ladder is pulled away from the house at the rate of 0.4 m/sec. How fast is the top of the ladder descending when the foot of the ladder is 3 m from the house?

 $\frac{dx}{dt} = 0.4 \text{ m/sec}$ $\frac{dy}{dt} = ? \text{ when } x = 3m + \frac{5}{3}$ $\frac{dy}{dt} = ? \text{ when } x = 3m + \frac{5}{3}$ $\frac{dy}{dt} = 0.4 \text{ m/sec}$ $\frac{dy}{dt} = ? \text{ when } x = 3m + \frac{5}{3}$ $\frac{dy}{dt} = 0.4 \text{ m/sec}$ $\frac{dy}{dt} = -3(.4)$ $\frac{dy}{dt} = -3(.4)$ $\frac{dy}{dt} = -3 \text{ m/sec}$

A 5 meter long ladder is leaning against the side of a house. The foot of the ladder is pulled away from the house at the rate of 0.4 m/sec. Find the rate at which the angle between the ladder and

the ground is changing when the base of the ladder is 4 meters from $0.4 \, \text{m/sec} \, \frac{dP}{dH} =$

the wall.

$$Cos\theta = \frac{x}{h}$$

$$Cos\theta = \frac{x}{5}$$

$$Cos\theta = \frac{x}{5}$$

$$Cos\theta = \frac{x}{5}$$

$$-\sin\theta \frac{d\theta}{dt} = \frac{1}{5} \frac{dx}{dt}$$

$$-\frac{3}{5} \frac{dx}{dt} = \frac{1}{5} \frac{(4)}{(4)}$$

$$-\frac{3}{5} \frac{dx}{dt} = \frac{1}{5} \frac{4^{2}(-5)}{(4)}$$

$$\frac{dx}{dt} = \frac{1}{5} \frac{4^{2}(-5)}{(4)}$$

$$\frac{dx}{dt} = \frac{1}{5} \frac{4^{2}(-5)}{(4)}$$

$$\frac{dx}{dt} = \frac{1}{5} \frac{4^{2}(-5)}{(4)}$$

$$\frac{dx}{dt} = \frac{1}{5} \frac{4^{2}(-5)}{(4)}$$

Related rates: 1-11 Implicit: 5-150dd

> 3,4,5 6,8,10 5,12,13 8,15,17 7,24,25