2.4 The Chain Rule

- Find the derivative of a composite function using the Chain Rule.
- Find the derivative of a function using the General Power Rule.
- Simplify the derivative of a function using algebra.
- Find the derivative of a trigonometric function using the Chain Rule.

We've taken a lot of derivatives over the course of the last few sections. However, if you look back they have all been functions similar to the following kinds of functions.

х	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

#1
$$h(x) = 3(g(x))^3$$
;
Find $h'(2)$
 $h'(x) = 9(g(x))^2 \cdot g'(x)$
 $h'(2) = 9(g(2))^2 \cdot g'(2)$
 $= 9 \cdot 9(1) = 8$

#2
$$t(x)=f(x)/g(x)$$
; #3
Find $t'(2)$
 $f'(2)=\frac{g(2)}{f'(2)}-f(2)\frac{g'(2)}{g(2)}$
 $f'(2)=\frac{g(2)}{g(2)}$

$$p(x) = f(g(x));$$
Find p'(2)
$$p'(2) = f'(g(2)) \cdot g(2)$$

$$= f'(3)(1)$$

$$= (-4)(1)$$

$$-4$$

$$f(g(x))$$

$$f(g(x))$$

$$y = \sin 2x$$

$$y' = \cos 2x \cdot 2$$

q5.)
$$y = \sin(x^{2})$$

 $y' = \cos(x^{2}) \cdot 2x$
 $y'' = \cos(x^{2}) \cdot 2 + 2x \cdot (-\sin(x^{2}) \cdot 2x)$
 $= 2\cos(x^{2}) + -4x^{2} \sin(x^{2})$

73.)
$$y = 2(a - (sec 4x)^3)$$
 $(0, 25)$
 $y' = 0 - 3 (sec 4x)^2 sec 4x tan 4x \cdot 4$
 $y' = -12 sec^3 1x tan 4x$
 $y'(0) = 0$