2.4 The Chain Rule

- Find the derivative of a composite function using the Chain Rule.
- Find the derivative of a function using the General Power Rule.
- Simplify the derivative of a function using algebra.
- Find the derivative of a trigonometric function using the Chain Rule.

The Chain Rule is for taking derivatives of composite functions such as:

$$h(x) = (3x - 1)^6$$
 and $s(x) = sin(5x)$

These functions have an outer and inner function.

$$\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$$

Find dy/dx

#1:
$$y = (2x - 3)^2$$

 $y = 4x - 12x + 9$
 $y' = 8x - 12$
 $y' = 4(2x - 3)$

$$y = (2x-3)^{2}$$
 $y' = 2(2x-3) \cdot 2$
 $y' = 4(2x-3)$

Differentiate.

#2:
$$y = (2x - 3)^5$$

$$y' = 5(2x - 3) \cdot 2$$

$$y' = 10(2x - 3)^4$$

#3 Find the derivative. Then find y'(2)

the derivative. Then find y
$$y = \frac{1}{\sqrt{x^2 + 1}}$$

$$y'' = -2(x^2 + 1) \cdot 2x$$

$$y''(2) = \frac{-8}{5^{3/2}} = \frac{-8}{\sqrt{12.5}}$$

$$= -8.5^{-3/2}$$

$$s(t) = \frac{1}{t^{2} + 3t - 1}$$

$$s(t) = (t^{2} + 3t - 1)$$

$$s(t) = -1(t^{2} + 3t - 1) \cdot (2t + 3)$$

$$s(t) = -(2t + 3)$$

$$(t^{2} + 3t - 1)$$

$$y' = \sin(\pi x)$$

$$y' = Cos(\pi x) \cdot \pi$$

$$y' = \pi \cos(\pi x)$$

#6:
$$y = sec(x^2)$$

 $y' = sec(x^2) + an(x^2) \cdot dx$
 $y' = 2x sec(x^2) + an(x^2)$

#7:
$$y = \cos^3 x$$

$$y = (cDSX)$$

$$y' = 3(cDSX)(-SinX)$$

$$y' = -3cDSXSinX$$