Product and Quotient Rules and Higher-Order Derivatives

- Find the derivative of a function using the Product Rule.
- Find the derivative of a function using the Quotient Rule.
- Find the derivative of a trigonometric function.
- Find a higher-order derivative of a function.

The Product Rule

$$\frac{d}{dx}[f \cdot g] = f \cdot g' + g \cdot f'$$

HW Pg. 126: 1, 3, 17, 31, 53, 63a

#1
$$f(x) = (6x + 5)(x^{3} - 2)$$

$$f(x) = 6x^{4} + 5x^{3} - 12x - 10$$

$$f'(x) = 24x^{3} + 15x^{2} - 12$$

$$= 3(8x^{3} + 5x^{2} - 4)$$

$$did not vse product rule$$

#2
$$f(x) = \sin x \cos x$$

 $f'(x) = \sin x (-\sin x) + \cos x (\cos x)$
 $= \cos^2 x - \sin^2 x$
 $= \cos^2 x$
 $= \cos^2 x$

Do you need to use product rule to find the derivative?

#3
$$f(x) = (x^2 - 3)^2$$

No
 $f(x) = 4x^3$

No
 $f(x) = 4x^3$
 $f(x) = 4x^3$

#4
$$f(x) = 4x^{3}$$

$$Nv$$

$$f(x) = 12x^{2}$$

$$f(x) = 4(3x^2) + x^3(0)$$

$$f(x) = x \sin x$$

$$f(x) = \frac{1}{x} + \sin x$$

#7

$$f(x) = \sqrt{x}(x-2)$$

$$f(x) = \chi^{3/2} - 2\chi$$

$$f(x) = \frac{3}{2}\chi^{1/2} - |\chi|^{1/2}$$

$$f'(x) = \frac{3}{2}\chi^{1/2} - |\chi|^{1/2}$$

Find the equation of the tangent line to f(x) at the indicated x-value

#8
$$f(x) = \frac{\sin x}{x}; x = \frac{\pi}{2}$$

$$f(x) = \sin x \cdot x$$

$$f'(x) = \sin x \cdot x - 1$$

$$f'(x) = \sin x \cdot (-x^{-2}) + x - \cos x$$

$$f'(\frac{\pi}{2}) = \sin \frac{\pi}{2} \left(\frac{\pi}{2} \right)^{2} + Cosx$$

$$= (1) \left(\frac{4}{\pi^{2}} \right)$$

$$= \sqrt{1 - \frac{4}{\pi}} \left(x - \frac{\pi}{2} \right)$$