AP Multiple Choice Practice Chapter 3

1)

The graph of $y = 5x^4 - x^5$ has a point of inflection at

(A) (0,0) only

(B) (3,162) only

(4,256) only (C)

(D) (0,0) and (3,162)

(E) (0,0) and (4,256)

2)

For what value of k will $x + \frac{k}{x}$ have a relative maximum at x = -2?

- (A) -4 (B) -2 (C) 2
- (D) 4
- (E) None of these

3)

The derivative of $f(x) = \frac{x^4}{3} - \frac{x^5}{5}$ attains its maximum value at $x = \frac{x^4}{3} - \frac{x^5}{5}$

- (A) -1
- (B) 0
- (C) 1
- (D) $\frac{4}{3}$

4)

Let f be the function given by $f(x) = x^3 - 3x^2$. What are all values of c that satisfy the conclusion of the Mean Value Theorem of differential calculus on the closed interval [0,3]?

- (A) 0 only
- (B) 2 only
- (C) 3 only (D) 0 and 3
- (E) 2 and 3

5)

Which of the following functions shows that the statement "If a function is continuous at x = 0, then it is differentiable at x = 0 " is false?

- (A) $f(x) = x^{-\frac{4}{3}}$ (B) $f(x) = x^{-\frac{1}{3}}$ (C) $f(x) = x^{\frac{1}{3}}$ (D) $f(x) = x^{\frac{4}{3}}$ (E) $f(x) = x^3$

6)

If $f(x) = \frac{1}{3}x^3 - 4x^2 + 12x - 5$ and the domain is the set of all x such that $0 \le x \le 9$, then the absolute maximum value of the function f occurs when x is

- (A) 0
- (B) 2
- (C) 4
- (D) 6
- (E) 9

If $f(x) = x + \frac{1}{x}$, then the set of values for which f increases is

(A) $\left(-\infty, -1\right] \cup \left[1, \infty\right)$

(B) $\begin{bmatrix} -1,1 \end{bmatrix}$

(C) $\left(-\infty,\infty\right)$

(D) $(0,\infty)$

(E) $(-\infty,0)\cup(0,\infty)$

8)

An equation of the line tangent to $y = x^3 + 3x^2 + 2$ at its point of inflection is

(A) y = -6x - 6

(B) y = -3x + 1

(C) y = 2x + 10

(D) y = 3x - 1

(E) y = 4x + 1

9)

The graph of the <u>derivative</u> of f is shown in the figure above. Which of the following could be the graph of f?

(A)

(R

(C)

(D)

Έ

10)

The position of a particle moving along a straight line at any time t is given by $s(t) = t^2 + 4t + 4$. What is the acceleration of the particle when t = 4?

- (A) 0
- (B) 2
- (C) 4
- (D) 8
- (E) 12

11)

Let f be a function that is continuous on the closed interval [-2,3] such that f'(0) does not exist, f'(2) = 0, and f''(x) < 0 for all x except x = 0. Which of the following could be the graph of f?

12)

The graph of y = f(x) on the closed interval [2,7] is shown above. How many points of inflection does this graph have on this interval?

- (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Five

The Mean Value Theorem guarantees the existence of a special point on the graph of $y = \sqrt{x}$ between (0,0) and (4,2). What are the coordinates of this point?

- (A) (2,1)
- (B) (1,1)
- (C) $(2,\sqrt{2})$
- (E) None of the above

14)

A point moves in a straight line so that its distance at time t from a fixed point of the line is $8t - 3t^2$. What is the *total* distance covered by the point between t = 1 and t = 2?

- (A) 1
- (B) $\frac{4}{3}$ (C) $\frac{5}{3}$

15)

Given the function defined by $f(x) = 3x^5 - 20x^3$, find all values of x for which the graph of f is concave up.

- (A) x > 0
- (B) $-\sqrt{2} < x < 0 \text{ or } x > \sqrt{2}$
- (C) -2 < x < 0 or x > 2
- (D) $x > \sqrt{2}$
- (E) -2 < x < 2

16)

If y is a function of x such that y' > 0 for all x and y'' < 0 for all x, which of the following could be part of the graph of v = f(x)?

1	7	١
1	/	ı

The approximate value of $y = \sqrt{4 + \sin x}$ at x = 0.12, obtained from the tangent to the graph at x = 0, is

(A) 2.00

(B) 2.03

(C) 2.06

(D) 2.12

(E) 2.24

18)

The point on the curve $2y = x^2$ nearest to (4,1) is

(A) (0,0) (B) (2,2) (C) $(\sqrt{2},1)$ (D) $(2\sqrt{2},4)$ (E) (4,8)

19)

For small values of h, the function $\sqrt[4]{16+h}$ is best approximated by which of the following?

(A) $4 + \frac{h}{32}$

(B) $2 + \frac{h}{32}$

(C) $\frac{h}{32}$

(D) $4 - \frac{h}{32}$

(E) $2 - \frac{h}{22}$

20)

If the position of a particle on the x-axis at time t is $-5t^2$, then the average velocity of the particle for $0 \le t \le 3$ is

(A) -45 (B) -30 (C) -15 (D) -10 (E) -5

21)

If the graph of $y = x^3 + ax^2 + bx - 4$ has a point of inflection at (1, -6), what is the value of b?

(A) −3

(B) 0

(C) 1

(D) 3

(E) It cannot be determined from the information given.

22)

The volume of a cylindrical tin can with a top and a bottom is to be 16π cubic inches. If a minimum amount of tin is to be used to construct the can, what must be the height, in inches, of the can?

(A) $2\sqrt[3]{2}$

(B) $2\sqrt{2}$ (C) $2\sqrt[3]{4}$

(D) 4

(E) 8

2	2	7
Z	.ว์	

The absolute maximum value of $f(x) = x^3 - 3x^2 + 12$ on the closed interval [-2, 4] occurs at x = 1

- (A) 4
- (B) 2
- (C) 1
- (D) 0
- (E) -2

24)

A particle moves along the x-axis so that at any time $t \ge 0$ its position is given by $x(t) = t^3 - 3t^2 - 9t + 1$. For what values of t is the particle at rest?

- (A) No values
- (B) 1 only
- (C) 3 only
- (D) 5 only
- (E) 1 and 3

25)

The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that

- (A) x < 0 (B) x < 2 (C) x < 5 (D) x > 0 (E) x > 2

26)

The point on the curve $x^2 + 2y = 0$ that is nearest the point $\left(0, -\frac{1}{2}\right)$ occurs where y is

- (A) $\frac{1}{2}$
- (B) 0
- (C) $-\frac{1}{2}$
- (D) -1
- (E) none of the above

Answers

1 2 3 4 5	B D C
4	B C
5	C
6	E
7	Α
8	В
6 7 8 9	В
10	A B B E C B C B
11	E
12	C
13	В
14	С
14 15	В
16	В
17	
18	B B
18 19 20	В
20	B C B
21	В
21 22	D
23	Ā
24	C
24 25	C E
26	В
0	_