AP Calculus

More Motion on a line

A particle moves along a line according to a law of motion $t \ge 0$, where t is measured in seconds and s(t) is measured in meters.

- a. When does the particle change direction? Justify.
- b. When is the particle moving to the right? Left? Justify.
- c. Is the particle slowing down or speeding up at t = 0.5? Justify.
- d. Is the velocity increasing or decreasing at t = 2.5? Justify.
- 1. $s(t) = -t^3 + 12t^2 36t$
- 2. $s(t) = \cos\left(\frac{\pi t}{4}\right), [0, 6]$
- 3. $s(t) = (t-3)^3(t-1)$

Answers

- 1a t = 2, 6; because v(t) = 0 at t = 2, 6 and v(t) changes signs at these times.
- 1b right: (2, 6) because v(t) > 0 on this interval left: (0, 2) and (6, inf) because v(t) < 0 on these intervals
- 1c slowing down at t = 0.5 because v(t) and a(t) have opposite signs
- 1d velocity increasing because a(t) > 0 at t = 2.5
- 2a t = 4 because v(t) = 0 at t = 4 and v(t) changes signs at this time
- 2b right: (4, 6) because v(t) > 0 on this interval left: (0, 4) because v(t) < 0 on this interval
- 2c speeding up at t = 0.5 because v(t) and a(t) have same signs
- 2d velocity increasing because a(t) < 0 at t = 2.5
- 3a t = 3/2: because v(t) = 0 and v(t) changes signs at this time
- 3b right: (3/2, 3) and (3, inf) because v(t) > 0 on these intervals left: (0, 3/2) because v(t) < 0 on this interval
- 3c slowing down at t = 0.5 because v(t) and a(t) have opposite signs
- 3d velocity decreasing because a(t) < 0 at t = 2.5