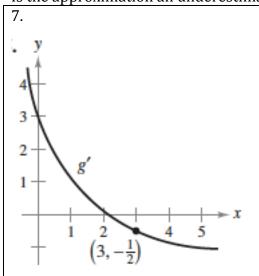
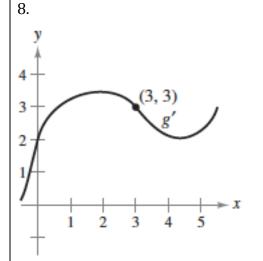
AP Calculus

Linear Approximation

Use linear approximation at x = 2 to estimate the value of f(a) for the given function. Then, state if the approximation is an overestimate or an underestimate and explain.

1.
$$f(x) = \frac{6}{x^2}$$
; $a = 1.9$


2.
$$f(x) = x^5$$
; $a = 2.1$


3.
$$f(x) = \sqrt{x+7}$$
; $a = 1.99$

Estimate the value of the expression using linear approximation.

- 4. $\sqrt{63.9}$
- 5. $\sqrt[3]{-65}$
- 6. $(-2.98)^3$

Using the graph of g', approximate g(2.93) and g(3.1) given that g(3) = 8. Is the approximation an underestimate or overestimate? Explain.

Answers

1
$$1\frac{13}{20} = 1.65$$
 underestimate since f(x) is concave up at x = 2

2 40 underestiamte since
$$f(x)$$
 is concave up at $x = 2$

3
$$2\frac{599}{600}$$
 overestimate since f(x) is concave down at x = 2

4
$$7\frac{159}{160}$$

$$-4\frac{1}{48}$$

$$6 \qquad -26\frac{23}{50} = -26.46$$

7 g(2.93) =
$$8\frac{7}{200}$$
 = 8.035; overestimate since g' is decreasing (g is concave down at x = 3)
g(3.1) = $7\frac{19}{20}$ = 7.95

8
$$g(2.93) = 7\frac{79}{100} = 7.79$$
; overestimate since g' is decreasing (g is concave down at x = 3)
 $g(3.1) = 8\frac{3}{10} = 8.3$