## **AP Calculus: Interpreting Derivative Graphs**



Note: This is the graph of the derivative of f, not the graph of f.

- 1) Is f(x) differentiable on the interval [-10, 10]? Explain
- 2) Is f(x) continuous on the interval [-10, 10]? Explain.
- 3) State the value(s) of x where the derivative is zero.
- 4) State the value(s) of x where f(x) has a relative maximum. Justify.
- 5) State the value(s) of x where f(x) has a relative minimum. Justify.
- State the interval(s) where f(x) is increasing. Justify.
- 7) State the interval(s) where f(x) is decreasing. Justify.
- 8) State the value(s) where f(x) has a point of inflection. Justify.
- 9) State the interval(s) where f(x) is concave up. Use f' to justify your answer.
- 10) State the interval(s) where f(x) is concave down. Use f' to justify your answer.



## This is the graph of the derivative of ${\bf g}$ , NOT the graph of ${\bf g}$ .

- 11) Is g(x) differentiable on the interval [-2, 5]? Explain
- 12) Is g(x) continuous on the interval [-2, 5]? Explain.
- 13) State the value(s) of x where the derivative is zero.
- 14) State the value(s) of x where g(x) has a relative maximum. Justify.
- 15) State the value(s) of x where g(x) has a relative minimum. Justify.
- 16) State the interval(s) where g(x) is increasing. Justify.
- 17) State the interval(s) where g(x) is decreasing. Justify.
- 18) State the value(s) where g(x) has a point of inflection. Justify.
- 19) State the interval(s) where g(x) is concave up. Use f' to justify your answer.
- 20) State the interval(s) where g(x) is concave down. Use f' to justify your answer.



Note: This is the graph of the derivative of f, not the graph of f.

The figure above shows the graph of f', the derivative of a function f. The domain of f is the set of all real numbers x such that -3 < x < 5.

- 21) Is f(x) differentiable on the interval [-3, 5]? Explain
- 22) Is f(x) continuous on the interval [-3, 5]? Explain.
- 23) State the value(s) of x where the derivative is zero.
- State the value(s) of x where f(x) has a relative maximum. Justify.
- State the value(s) of x where f(x) has a relative minimum. Justify.
- 26) State the interval(s) where f(x) is increasing. Justify.
- 27) State the interval(s) where f(x) is decreasing. Justify.
- 28) State the value(s) where f(x) has a point of inflection. Justify.
- 29) State the interval(s) where f(x) is concave up. Use f' to justify your answer.
- 30) State the interval(s) where f(x) is concave down. Use f' to justify your answer.



## This is the graph of the derivative of g, NOT the graph of g.

- 31) Is g(x) differentiable on the interval [-3, 7]? Explain
- 32) Is g(x) continuous on the interval [-3, 7]? Explain.
- 33) State the value(s) of x where the derivative is zero.
- 34) State the value(s) of x where g(x) has a relative maximum. Justify.
- 35) State the value(s) of x where g(x) has a relative minimum. Justify.
- 36) State the interval(s) where g(x) is increasing. Justify.
- 37) State the interval(s) where g(x) is decreasing. Justify.
- State the value(s) where g(x) has a point of inflection. Justify.
- 39) State the interval(s) where g(x) is concave up. Use g' to justify your answer.
- 40) State the interval(s) where g(x) is concave down. Use g' to justify your answer.