AP Calculus Chapter 5 Free Response Review

#1

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_1^{g(x)} f(t)dt$. Find the value w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

#2

A particle moves on the x-axis so that its acceleration at any time t > 0 is given by $a = \frac{t}{8} - \frac{1}{t^2}$. When t = 1, $v = \frac{9}{16}$, and $s = \frac{25}{48}$.

- (a) Find the velocity v in terms of t.
- (b) Does the numerical value of the velocity ever exceed 50? Explain.
- (c) Find the distance s from the origin at time t = 2.

#3

A particle moves along the x-axis in such a way that at time t > 0 its position coordinate is $x = \sin(e^t)$.

- (a) Find the velocity and acceleration of the particle at time t.
- (b) At what time does the particle first have zero velocity?
- (c) What is the acceleration of the particle at the time determined in part (b)?

#4

Let
$$y = 2e^{\cos x}$$
.

(a) Calculate
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

(b) If x and y both vary with time in such a way that y increases at a steady rate of 5 units per second, at what rate is x changing when $x = \frac{\pi}{2}$?

#5

Let f be the function given by $f(x) = \ln \frac{x}{x-1}$.

- (a) What is the domain of f?
- (b) Find the value of the derivative of f at x = -1.
- (c) Write an expression for $f^{-1}(x)$, where f^{-1} denotes the inverse function of f.

#6

Let f be the function defined by $f(x) = (x^2 + 1) e^{-x}$ for $-4 \le x \le 4$.

- (a) For what value of x does f reach its absolute maximum? Justify your answer.
- (b) Find the x-coordinates of all points of inflection of f. Justify your answer.

#7

A particle moves along the x-axis with acceleration given by $a(t) = 2t - 10 + \frac{12}{t}$ for $t \ge 1$.

- (a) Write an expression for the velocity v(t), given that v(1) = 9.
- (b) For what values of t, $1 \le t \le 3$, is the velocity a maximum? Justify your answer.

- (a) h(1) = f(g(1)) 6 = f(2) 6 = 9 6 = 3
 h(3) = f(g(3)) 6 = f(4) 6 = -1 6 = -7
 Since h(3) < -5 < h(1) and h is continuous, by the Intermediate Value Theorem, there exists a value r, 1 < r < 3, such that h(r) = -5.
- (b) $\frac{h(3) h(1)}{3 1} = \frac{-7 3}{3 1} = -5$ Since h is continuous and differentiable, by the Mean Value Theorem, there exists a value c, 1 < c < 3, such that h'(c) = -5.

(c)
$$w'(3) = f(g(3)) \cdot g'(3) = f(4) \cdot 2 = -2$$

(d) g(1) = 2, so $g^{-1}(2) = 1$. $\left(g^{-1}\right)'(2) = \frac{1}{g'\left(g^{-1}(2)\right)} = \frac{1}{g'(1)} = \frac{1}{5}$

An equation of the tangent line is $y - 1 = \frac{1}{5}(x - 2)$.

(a)
$$v = \int \left(\frac{t}{8} - \frac{1}{t^2}\right) dt = \frac{t^2}{16} + \frac{1}{t} + C$$

At
$$t = 1$$
, $\frac{9}{16} = \frac{1}{16} + 1 + C$ and so $C = -\frac{1}{2}$. Therefore $v = \frac{t^2}{16} + \frac{1}{t} - \frac{1}{2}$.

(b) Yes, the numerical value does exceed 50. This can be explained by any one of the following observations:

(i)
$$\lim_{t \to +\infty} v(t) = \infty$$

(ii)
$$\lim_{t\to 0^+} v(t) = \infty$$

(iii) When
$$t = 32$$
, for example, $v = \frac{32^2}{16} + \frac{1}{32} - \frac{1}{2} = 64 + \frac{1}{32} - \frac{1}{2} > 50$

(c)
$$s = \int \left(\frac{t^2}{16} + \frac{1}{t} - \frac{1}{2}\right) dt = \frac{t^3}{48} + \ln t - \frac{1}{2}t + C$$

At
$$t = 1$$
, $\frac{25}{48} = \frac{1}{48} - \frac{1}{2} + C$ and so $C = 1$. Therefore $s = \frac{t^3}{48} + \ln t - \frac{1}{2}t + 1$.

#3

(a)
$$x = \sin(e^{t})$$

$$v = \frac{dx}{dt} = e^{t} \cos(e^{t})$$

$$a = \frac{dv}{dt} = e^{t} (\cos(e^{t}) - e^{t} \sin(e^{t}))$$

- (b) v(t) = 0 when $\cos(e^t) = 0$. Hence $e^t = \frac{\pi}{2}$ gives the first time when the velocity is zero, and so $t = \ln \frac{\pi}{2}$.
- (c) $a\left(\ln\frac{\pi}{2}\right) = \frac{\pi}{2}\left(\cos\frac{\pi}{2} \frac{\pi}{2}\sin\frac{\pi}{2}\right) = -\frac{\pi^2}{4}$

#4

(a)
$$y = 2e^{\cos x}$$
$$\frac{dy}{dx} = 2e^{\cos x}(-\sin x) = -2(\sin x)e^{\cos x}$$
$$\frac{d^2y}{dx^2} = -2(\sin x)e^{\cos x}(-\sin x) - 2(\cos x)e^{\cos x} = 2e^{\cos x}(\sin^2 x - \cos x)$$

(b)
$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = -2(\sin x)e^{\cos x} \cdot \frac{dx}{dt}$$

Substituting $\frac{dy}{dt} = 5$ and $x = \frac{\pi}{2}$ gives

$$5 = -2\left(\sin\frac{\pi}{2}\right)e^{\cos(\pi/2)}\frac{dx}{dt} = -2(1)e^{0}\frac{dx}{dt} = -2\frac{dx}{dt}.$$

Therefore
$$\frac{dx}{dt} = -\frac{5}{2}$$
 when $x = \frac{\pi}{2}$.

(a)
$$\frac{x}{x-1} > 0$$

 $x > 0$ and $x-1 > 0 \Rightarrow x > 1$
 $x < 0$ and $x-1 < 0 \Rightarrow x < 0$
 $x < 0$ or $x > 1$

(b)
$$f'(x) = \frac{x-1}{x} \cdot \frac{(x-1)-x}{(x-1)^2}$$

= $\frac{-1}{x(x-1)}$

or

$$\ln|x| - \ln|x - 1| \Rightarrow f'(x) = \frac{1}{x} - \frac{1}{x - 1}$$
$$f'(-1) = -\frac{1}{2}$$

(c)
$$y = \ln\left(\frac{x}{x-1}\right)$$

$$e^{y} = \frac{x}{x-1}$$

$$x(e^{y}-1) = e^{y}$$

$$x = \frac{e^{y}}{e^{y}-1}$$

$$f^{-1}(x) = \frac{e^{x}}{e^{x}-1}$$

The absolute maximum is at a critical point or an endpoint. There is a critical point at x = 1.

$$f(-4) = 17e^4$$

$$f(1) = \frac{2}{e}$$

$$f(4) = \frac{17}{e^4}$$

Therefore the absolute maximum is at x = -4.

(b)
$$f''(x) = e^{-x}(x-1)^2 - e^{-x} \cdot 2(x-1) = e^{-x}(x-1)(x-3)$$

$$f''(x) > 0$$
 $-4 < x < 1$

$$f''(x) < 0$$
 $1 < x < 3$

$$f''(x) > 0$$
 $3 < x < 4$

The points of inflection are at x = 1 and x = 3.

#7

(a)
$$v(t) = t^2 - 10t + 12 \ln t + C$$

 $9 = v(1) = 1 - 10 + 12(0) + C$
 $C = 18$

$$v(t) = t^2 - 10t + 12\ln t + 18$$

(b)
$$a(t) = \frac{2t^2 - 10t + 12}{t} = \frac{2(t-2)(t-3)}{t}$$

$$a(t) = 0$$
 when $t = 2$ and $t = 3$.

$$a(t)$$
 $+$ $-$

Since the velocity is increasing for $1 \le t < 2$ and decreasing for 2 < t < 3, the velocity is a maximum at t = 2.