Calculator

1)

The velocity, in ft/sec, of a particle moving along the x-axis is given by the function $v(t) = e^t + te^t$. What is the average velocity of the particle from time t = 0 to time t = 3?

- (A) 20.086 ft/sec
- (B) 26.447 ft/sec
- (C) 32.809 ft/sec
- (D) 40.671 ft/sec
- (E) 79.342 ft/sec

2)

A pizza, heated to a temperature of 350 degrees Fahrenheit (°F), is taken out of an oven and placed in a 75°F room at time t = 0 minutes. The temperature of the pizza is changing at a rate of $-110e^{-0.4t}$ degrees Fahrenheit per minute. To the nearest degree, what is the temperature of the pizza at time t = 5 minutes?

- (A) 112°F
- (B) 119°F
- (C) 147°F
- (D) 238°F
- (E) 335°F

3)

The function f has first derivative given by $f'(x) = \frac{\sqrt{x}}{1 + x + x^3}$. What is the x-coordinate of the inflection point of the graph of f?

- (A) 1.008
- (B) 0.473
- (C) 0
- (D) -0.278
- (E) The graph of f has no inflection point.

4)

A particle moves along the x-axis so that at any time t > 0, its acceleration is given by $a(t) = \ln(1 + 2^t)$. If the velocity of the particle is 2 at time t = 1, then the velocity of the particle at time t = 2 is

- (A) 0.462
- (B) 1.609
- (C) 2.555
- (D) 2.886
- (E) 3.346

5)

Let f be the function with derivative given by $f'(x) = \sin(x^2 + 1)$. How many relative extrema does f have on the interval 2 < x < 4?

- (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Five

6)

The number of bacteria in a culture is given by $N(t) = 200 \ln(t^2 + 36)$, where t is measured in days. On what day is the change in growth a maximum?

- (A) 4
- (B) 6
- (C) 8
- (D) 10
- (E) 12

7)

A particle moves along the x-axis so that at time $t \ge 0$, its position is given by $x(t) = (t+1)(t-3)^3$. For what values of t is the velocity of the particle increasing?

- (A) all t

- (B) 0 < t < 1 C) 0 < t < 3 (D) 1 < t < 3 E) t < 1 or t > 3

8)

Water is pumped into an empty tank at a rate of $r(t) = 20e^{0.02t}$ gallons per minute. Approximately how many gallons of water have been pumped into the tank in the first five minutes?

- (A) 20 gal
- (B) 22 gal
- (C) 85 gal
- (D) 105 gal
- (E) 150 gal

NonCalculator

Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?

- (A) $\frac{1}{13}$ (B) $\frac{1}{4}$ (C) $\frac{7}{4}$ (D) 4 (E) 13

10)

Let f be the function given by $f(x) = 2xe^x$. The graph of f is concave down when

- (A) x < -2 (B) x > -2 (C) x < -1 (D) x > -1 (E) x < 0

11)

. If $f(x) = \ln(x + 4 + e^{-3x})$, then f'(0) is

- (A) $-\frac{2}{5}$ (B) $\frac{1}{5}$ (C) $\frac{1}{4}$ (D) $\frac{2}{5}$

- (E) nonexistent

. What is the slope of the line tangent to the curve $y = \arctan(4x)$ at the point at which

$$x=\frac{1}{4}$$
?

- (A) 2 (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{1}{2}$ (E) -2

13)

An equation for a tangent line to the graph of $y = Arctan \frac{x}{3}$ at the origin is:

- (A) x 3y = 0
- (B) x y = 0
- (C) x = 0
- (D) y = 0
- (E) 3x y = 0

14)

$$\int \frac{x}{x^2 - 4} dx =$$

(A)
$$\frac{-1}{4(x^2-4)^2} + C$$

- (B) $\frac{1}{2(x^2-4)}+C$
- (C) $\frac{1}{2} \ln |x^2 4| + C$
- (D) $2 \ln |x^2 4| + C$
- (E) $\frac{1}{2}\arctan\left(\frac{x}{2}\right)+C$

15)

$$\int \frac{e^{x^2} - 2x}{e^{x^2}} \, dx$$

(A)
$$x - e^{x^2} + C$$

(B)
$$x - e^{-x^2} + C$$

(C)
$$x + e^{-x^2} + C$$

(D)
$$-e^{x^2} + C$$

(E)
$$e^{-x^2} + C$$

16)

Let $f(x) = \frac{\ln e^{2x}}{x-1}$ for x > 1. If g is the inverse of f, then g'(3) =

(A) 2

(B) 1

(C) 0

(D) -1

(E) -2

17)

Let $f(x) = \ln x + e^{-x}$. Which of the following is TRUE at x = 1?

(A) f is increasing

(B) f is decreasing

(C) f is discontinuous

(D) f has a relative minimum

(E) f has a relative maximum

18)

A relative maximum of the function $f(x) = \frac{(\ln x)^2}{x}$ occurs at

(A) 0

(B) 1

(C) 2

(D) e

(E) e^2

19

$$\int_{2}^{6} \left(\frac{1}{x} + 2x \right) dx =$$

(A) ln 4 + 32

(B) $\ln 3 + 40$

(C) $\ln 3 + 32$

(D) ln 4 + 40

(E) ln 12 + 32

20)

$$\int \frac{x-2}{x-1} \, dx =$$

(A)
$$-\ln|x-1| + C$$

(B)
$$x + \ln|x - 1| + C$$

(C)
$$x - \ln|x - 1| + C$$

(D)
$$x + \sqrt{x-1} + C$$

(E)
$$x - \sqrt{x - 1} + C$$

21)

The acceleration of a particle at time t moving along the x-axis is given by: $a = 4e^{2t}$. At the instant when t = 0, the particle is at the point x = 2 moving with velocity v = -2.

The position of the particle at $t = \frac{1}{2}$ is

(A) e-3 (B) e-2 (C) e-1 (D) e

(E) e + 1

22)

$$\int_{\pi/4}^{\pi/3} \frac{\sec^2 x}{\tan x} \, dx =$$

(A) $\ln \sqrt{3}$ (B) $-\ln \sqrt{3}$ (C) $\ln \sqrt{2}$ (D) $\sqrt{3} - 1$ (E) $\ln \frac{\pi}{3} - \ln \frac{\pi}{4}$

Answers

1 A 2 A

3 B

4 E

5 D

6 B

7 E

8 D

9 B

10 A

11 A

12 A

13 A

14 C

15 C

16 E

17 A

18 E

19 C

20 C 21 C

22 A

FRQ Calculator

- 1. A particle moves along the y-axis with velocity given by $v(t) = t \sin(t^2)$ for $t \ge 0$.
 - (a) In which direction (up or down) is the particle moving at time t = 1.5? Why?
 - (b) Find the acceleration of the particle at time t = 1.5. Is the velocity of the particle increasing at t = 1.5? Why or why not?
 - (c) Given that y(t) is the position of the particle at time t and that y(0) = 3, find y(2).
 - (d) Find the total distance traveled by the particle from t = 0 to t = 2.

2.

The rate at which water flows into a tank, in gallons per hour, is given by a continuous, increasing function R. A table of selected values of R(t) for the time interval $0 \le t \le 24$ as shown in the table below.

t (hours)	0	4		12			
R(t) (gallons per hour)	25	28	33	42	46	50	52

- (a) Use a right-hand Riemann sum with 6 subintervals to approximate $\int_{0}^{2\pi} R(t) dt$. Is your approximation greater or less than the true value? Give a reason for your answer.
- (b) A model for the rate at which water flows into the tank is given by the function

$$w(t) = 27e^{0.03t},$$

where t is measured in hours and w(t) is measured in gallons per hour. Use this model to find the average rate at which water flows into the tank from t = 0 to t = 24.

(c) The tank contained 125 gallons at time t = 0. Use the model in part b) to find the amount of water in the tank at t = 24 hours.

Answers

- 1a up because v(1.5) > 0
- 1b No, v is decreasing at 1.5 because v'(1.5) < 0
- 1c 3.826 or 3.827
- 1d 1.173
- 2a 1004 gallons
- 2b 39.541 gallons per hour
- 2c 1073.989 or 1073.99 gallons