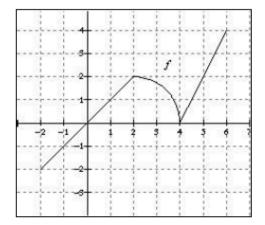
## **AP Calculus**

## 2<sup>nd</sup> Fundamental Theorem/Accumulation Functions

1. Let  $F(x) = \int_{2}^{x} f(t) dt$ . The graph of f on the interval [-2, 6] consists of two line segments and a quarter of a circle, as shown at right.



- (a) Find F(0) and F(4).
- (b) Determine the interval where F(x) is increasing. Justify your answer.
- (c) Find the critical numbers of F(x) and determine if each corresponds to a relative minimum value, a relative maximum value, or neither. Justify your answers.
- (d) Find the absolute extreme values of F(x) and the x-values at which they occur. Justify your answers.
- (e) Find the x-coordinates of the inflection points of F(x). Justify your answer.
- (f) Determine the intervals where the graph of F(x) is concave down. Justify your answer.

Evaluate each expression.

a. 
$$\frac{d}{dx} \left[ \int_{1}^{x} \sqrt{t^2 - 1} \ dt \right]$$

b. 
$$\frac{d}{dx} \left[ \int_{x}^{3} t \sin t \, dt \right]$$

c. 
$$\frac{d}{dx} \left| \int_{\frac{\pi}{2}}^{x^2} \cos t \, dt \right|$$

3)

Use the Second Fundamental Theorem of Calculus to find the derivatives of the following functions.

a) 
$$f(x) = \int_{1}^{x} (t^2 + 1)^{20} dt$$

b) 
$$g(x) = \int_{-1}^{x} \sqrt{t^3 + 1} \ dt$$

c) 
$$g(x) = \int_{0}^{x} \frac{1}{1+t^{4}} dt$$

d) 
$$f(x) = \int_{A}^{x^2} \cos(t^2) dt$$

4)

Find the interval on which the curve  $y = \int_{0}^{x} (t^3 + t^2 + 1) dt$  is concave up. Justify your answer.

1. (a) 
$$F(0) = \int_{2}^{0} f(t) dt = -\int_{0}^{2} f(t) dt = -2$$
$$F(4) = \int_{2}^{4} f(t) dt = \pi$$

- (b) F(x) is increasing when F'(x) is positive. Since F'(x) = f(x) and f(x) is positive on the intervals (0,4) and (4,6), then F(x) is increasing on these intervals and in fact on the interval [0,6].
- (c) At x = 0, F(x) has a relative minimum because F' = f changes from negative to positive there.
  At x = 4, F(x) has neither a relative minimum nor a relative maximum because F' = f does not change sign there.
- (d) Using the Candidates Test, we compare F(-2)=0, F(0)=-2,  $F(4)=\pi$ , and  $F(6)=\pi+4$ , and find that F(0)=-2 is the absolute minimum value of F on the interval  $\begin{bmatrix} -2,6 \end{bmatrix}$  and  $F(6)=\pi+4$  is the absolute maximum value of F on the interval  $\begin{bmatrix} -2,6 \end{bmatrix}$ .
- (e) F(x) has inflection points at x = 2 and x = 4 because F'' = f' changes signs at these points.
- (f) The graph of F(x) is concave down on the interval (2, 4) because F'(x) = f(x) is strictly decreasing on this interval and F''(x) = f'(x) is defined there, or, equivalently, because F''(x) is negative on the interval.

2) a. 
$$\sqrt{x^2 - 1}$$

b.  $-x\sin x$  c.

c.  $2x\cos x^2$ 

3)

a.  $f'(x) = (x^2 + 1)^{20}$ 

b.  $g'(x) = \sqrt{x^3 + 1}$ 

c.  $g'(x) = \frac{1}{1+x^4}$ 

 $d. \qquad f'(x) = 2x \cos x^4$