(Mostly) Everything you should know for AP Calculus...

- 1. Limit Definition of the Derivative: $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- 2. Limit Definition of the Derivative (Alternative Form): $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$
- 3. Average Rate of change of f(x) on [a,b]: $\frac{f(b)-f(a)}{b-a}$
- 4. Average Value of f(x) on [a,b]: $\frac{1}{b-a}\int\limits_{-a}^{b}f(x)dx$
- 5. Intermediate Value Theorem:
 - Conditions: f(x) is continuous on the closed interval, [a, b]
 - Conclusion: There is a value c such that $f(a) \le f(c) \le f(b)$ or $f(b) \le f(c) \le f(a)$ and $a \le c \le b$.
- 6. Rolle's Theorem:
 - Conditions: f(x) is continuous on the closed interval, [a, b], and differentiable on the open interval (a, b) and f(a)=f(b)
 - Conclusion: f'(c) = 0 and a < c < b
- 7. Mean Value Theorem:
 - Conditions: f(x) is continuous on the closed interval, [a, b], and differentiable on the open interval (a, b)
 - Conclusion: $f'(c) = \frac{f(b) f(a)}{b a}$ and a < c < b
- 8. Extreme Value Theorem:
 - Conditions: f(x) is continuous on the closed interval, [a, b]
 - Conclusion: f(x) has an absolute maximum and absolute minimum at a critical number or an endpoint on [a, b]
- 9. Double Angle Identities:
 - $-\sin 2x = 2\sin x \cos x$
 - $-\cos 2x = \cos^2 x \sin^2 x$
- 10. Power Reducing Identities:

$$-\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$-\cos^2 x = \frac{1 + \cos 2x}{2}$$

- 11. Critical Number: f has a critical number when f' = 0 or is undefined
- 12. Increasing/Decreasing:
 - f is increasing when f' > 0
 - f is decreasing when f' < 0
- 13. Concavity:
 - f is concave up when f' is increasing and f'' > 0
 - f is concave down when f' is decreasing and f'' < 0
- 14. Relative Extrema (1st Derivative Test):
 - f has a relative maximum when f^{\prime} changes from positive to negative.
 - f has a relative minimum when f^\prime changes from negative to positive.

- 15. Relative Extrema (2nd Derivative Test):
 - f has a relative maximum when f' = 0 or is undefined and f'' < 0.
 - f has a relative minimum when f' = 0 or is undefined and f'' > 0
- 16. Point of Inflection
 - f has a point of inflection when f^{\prime} has relative extrema and $f^{\prime\prime}$ changes signs.
- 17. Fundamental theorem of calculus: $\int_a^b f(x)dx = F(b) F(a)$ $\int_a^b f(x)dx \text{ is the area under the curve of } f(x)$ $\int_b^a f(x)dx \text{ is negative if the area is below the x-axis}$
- 18. Accumulation Functions: $\int\limits_{c}^{g(x)}f(t)dt$
 - To find the derivative: $\frac{d}{dx} \left[\int_{c}^{g(x)} f(t) dt \right] = f(g(x))g'(x) \ (2^{ND} FTC)$
- 19. Volume by discs (horizontal axis): $\pi \int_{0}^{\infty} r^{2} dx$
- 20. Volume by discs (vertical axis): $\pi \int_{a}^{b} r^2 dy$
- 21. Volume by washers (horizontal axis): $\pi \int_{-\infty}^{b} (R^2 r^2) dx$
- 22. Volume by washers (vertical axis): $\pi \int_a^b (R^2 r^2) dy$
- 23. Volume by cross sections perpendicular to the x-axis: $\int_{-\infty}^{\infty} A(x) dx$
- 24. Volume by cross sections perpendicular to the y-axis: $\int_{-\infty}^{\infty} A(y) dy$
- 25. Position/ Velocity/Acceleration (AB):
 - Speed is increasing when: acceleration and velocity have the same signs
 - Speed is decreasing when: acceleration and velocity have opposite signs
- 26. Given a graph of f and $g(x) = \int_{-\infty}^{\infty} f(t)dt$:
 - The graph f is the graph of $\,g'$
 - $\int\limits_{-\infty}^{\infty}f(t)dt$ is the AREA under the curve f(t) .
 - To evaluate g(x), evaluate the integral by using geometric shapes.
- 27. Derivative Approximations

×	f(x)
а	е
Ь	f
d	g

To approximate
$$f'(c) \approx \frac{f(d) - f(b)}{d - b}$$

28. Tangent Line Approximations

1. Write the tangent line at the given point: (a, f(a))

$$y - f(a) = f'(a)(x - a)$$

2. Then plug in the point $x = x_1$ and solve for y.

$$y = f'(a)(x_1 - a) + f(a)$$

- 29. Absolute extrema Compare the y-values of the relative extrema AND the endpoints. If there is only 1 critical number then the critical number is both a relative and absolute extrema.
- 30. Particle Motion Position/ Velocity/ Acceleration
 - PVAJ:
 - \circ Position: x(t)
 - Velocity: x'(t) = v(t)
 - Acceleration: x''(t) = v'(t) = a(t)
 - SPEED
 - \circ Speed: |v(t)|
 - o INCREASING velocity and acceleration have the same signs
 - DECREASING velocity and acceleration have opposite signs
 - Initially: t=o
 - At Rest: v(t)=o
 - Particle Moving Right: v(t)>o
 - Particle Moving Left: v(t)<o
 - Total Distance on [a, b]: $\int_{a}^{b} |v(t)| dt$
 - Average velocity on [a, b]: $\frac{x(b)-x(a)}{b-a}$ or $\frac{1}{b-a}\int_a^b v(t)dt$
 - Instantaneous velocity at t=a: v(a) = x'(a)
- 31. Derivative Formulas

$$\frac{d}{dx}[c] = 0 \qquad \frac{d}{dx}[x] = 1 \qquad \frac{d}{dx}[cx] = c \qquad \frac{d}{dx}[x^c] = cx^{c-1}$$

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x) \qquad \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x) \qquad \frac{d}{dx}[\ln x] = \frac{1}{x} \qquad \frac{d}{dx}[e^x] = e^x \qquad \frac{d}{dx}[\sin x] = \cos x$$

$$\frac{d}{dx}[\cos x] = -\sin x \qquad \frac{d}{dx}[\tan x] = \sec^2 x \qquad \frac{d}{dx}[\cot x] = -\csc^2 x \qquad \frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\csc x] = -\csc x \cot x \qquad \frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}[\arctan x] = \frac{1}{1 + x^2}$$

32. Integration Formulas

$$\int dx = x + c \qquad \int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad \int \frac{dx}{x} = \ln|x| + c$$

$$\int e^x dx = e^x + c \qquad \int \sin x dx = -\cos x + c \qquad \int \cos x dx = \sin x + c$$

$$\int \tan x dx = -\ln|\cos x| + c \qquad \int \csc x dx = -\ln|\csc x + \cot x| + c \qquad \int \sec x dx = \ln|\sec x + \tan x| + c$$

$$\int \cot x dx = \ln|\sin x| + c \qquad \int \sec^2 x dx = \tan x \qquad \int \csc^2 x dx = -\cot x + c$$

$$\int \sec x \tan x dx = \sec x + c \qquad \int \csc^2 x dx = -\cot x + c$$

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \frac{1}{a} \arctan \frac{u}{a} + c$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \arccos \frac{|u|}{a} + c$$

$$33. \quad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

34. Integration by parts: $\int u \, dv = uv - \int v \, du$

35. Arc Length of f on [a, b]: $\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$

36. Vectors

Position: (x(t),y(t))

- Velocity: (x'(t), y'(t))

- Acceleration: (x''(t), y''(t))

- Speed (or magnitude of the velocity vector): $\sqrt{(x'(t))^2 + (y'(t))^2}$

Distance traveled on [a, b]: $\int_{-\infty}^{\infty} \sqrt{(x'(t))^2 + (y'(t))^2} dt$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dx} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

37. Polar $x = r \cos \theta$

$$y = r \sin \theta$$

- Slope of a polar curve:
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Area enclosed by a polar curve on $\left[lpha,eta
ight]$: $rac{1}{2}\int\limits_{0}^{b}r^{2}d heta$

- Area between two polar curves on $[\alpha,\beta]$: $\frac{1}{2}\int_{-\infty}^{\beta} (R^2-r^2)d\theta$

- Polar Arc Length:
$$\int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$$

38. Basic 5 Maclaurin Series

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n x^{2n+1}}{(2n+1)!}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n x^{2n+1}}{(2n+1)!} \qquad \cos x = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n x^{2n}}{(2n)!}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n x^{2n+1}}{2n+1}$$

39. Lagrange Error Bound: $\frac{\int_{-\infty}^{n+1} (z)(x-c)^{n+1}}{(n+1)!}$

40. Alternating Series Error Bound: 1st neglected term