(Mostly) Everything you should know for AP Calculus...

1. Limit Definition of the Derivative: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
2. Limit Definition of the Derivative (Alternative Form): $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
3. Average Rate of change of $f(x)$ on $[a, b]: \frac{f(b)-f(a)}{b-a}$
4. Average Value of $f(x)$ on $[a, b]: \frac{1}{b-a} \int_{a}^{b} f(x) d x$
5. Intermediate Value Theorem:

- Conditions: $f(x)$ is continuous on the closed interval, $[a, b]$
- Conclusion: There is a value c such that $f(a) \leq f(c) \leq f(b)$ or $f(b) \leq f(c) \leq f(a)$ and $a \leq c \leq b$.

6. Rolle's Theorem:

- Conditions: $f(x)$ is continuous on the closed interval, $[a, b]$, and differentiable on the open interval (a, b) and $f(a)=f(b)$
- Conclusion: $f^{\prime}(c)=0$ and $a<c<b$

7. Mean Value Theorem:

- Conditions: $f(x)$ is continuous on the closed interval, $[a, b]$, and differentiable on the open interval (a, b)
- Conclusion: $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ and $a<c<b$

8. Extreme Value Theorem:

- Conditions: $f(x)$ is continuous on the closed interval, $[a, b]$
- Conclusion: $f(x)$ has an absolute maximum and absolute minimum at a critical number or an endpoint on [a, b]

9. Double Angle Identities:
$-\sin 2 x=2 \sin x \cos x$
$-\cos 2 x=\cos ^{2} x-\sin ^{2} x$
10. Power Reducing Identities:
$-\sin ^{2} x=\frac{1-\cos 2 x}{2}$
$-\cos ^{2} x=\frac{1+\cos 2 x}{2}$
11. Critical Number: f has a critical number when $f^{\prime}=0$ or is undefined
12. Increasing/Decreasing:
$-f$ is increasing when $f^{\prime}>0$

- f is decreasing when $f^{\prime}<0$

13. Concavity:

- f is concave up when f^{\prime} is increasing and $f^{\prime \prime}>0$
$-f$ is concave down when f^{\prime} is decreasing and $f^{\prime \prime}<0$

14. Relative Extrema ($1^{\text {st }}$ Derivative Test):

- f has a relative maximum when f^{\prime} changes from positive to negative.
- f has a relative minimum when f^{\prime} changes from negative to positive.

15. Relative Extrema ($2^{\text {nd }}$ Derivative Test):

- f has a relative maximum when $f^{\prime}=0$ or is undefined and $f^{\prime \prime}<0$.
- f has a relative minimum when $f^{\prime}=0$ or is undefined and $f^{\prime \prime}>0$.

16. Point of Inflection

- $\quad f$ has a point of inflection when f^{\prime} has relative extrema and $f^{\prime \prime}$ changes signs.

17. Fundamental theorem of calculus: $\int_{a}^{b} f(x) d x=F(b)-F(a)$

- $\quad \int_{a}^{b} f(x) d x$ is the area under the curve of $f(x)$
- $\quad \int_{b}^{a} f(x) d x$ is negative if the area is below the x-axis

18. Accumulation Functions: $\int_{c}^{g(x)} f(t) d t$

- To find the derivative: $\frac{d}{d x}\left[\int_{c}^{g(x)} f(t) d t\right]=f(g(x)) g^{\prime}(x)\left(\underline{2}^{\mathrm{ND}} \mathrm{FTC}\right)$

19. Volume by discs (horizontal axis): $\pi \int_{a}^{b} r^{2} d x$
20. Volume by discs (vertical axis): $\pi \int_{a}^{b} r^{2} d y$
21. Volume by washers (horizontal axis): $\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d x$
22. Volume by washers (vertical axis): $\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d y$
23. Volume by cross sections perpendicular to the x-axis: $\int_{a}^{b} A(x) d x$
24. Volume by cross sections perpendicular to the y-axis: $\int_{a}^{b} A(y) d y$
25. Position/ Velocity/Acceleration (AB):

- Speed is increasing when: acceleration and velocity have the same signs
- Speed is decreasing when: acceleration and velocity have opposite signs

26. Given a graph of f and $g(x)=\int_{0}^{x} f(t) d t$:

- The graph f is the graph of g^{\prime}
- $\quad \int_{0}^{x} f(t) d t$ is the AREA under the curve $f(t)$.
- To evaluate $g(x)$, evaluate the integral by using geometric shapes.

27. Derivative Approximations

x	$f(x)$
a	e
b	f
d	g

To approximate $f^{\prime}(c) \approx \frac{f(d)-f(b)}{d-b}$
28. Tangent Line Approximations

1. Write the tangent line at the given point: $(a, f(a))$

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

2. Then plug in the point $x=x_{1}$ and solve for y.

$$
y=f^{\prime}(a)\left(x_{1}-a\right)+f(a)
$$

29. Absolute extrema - Compare the y-values of the relative extrema AND the endpoints. If there is only 1 critical number then the critical number is both a relative and absolute extrema.
30. Particle Motion - Position/ Velocity/ Acceleration

- PVAJ:
- Position: $x(t)$
- Velocity: $x^{\prime}(t)=v(t)$
- Acceleration: $x^{\prime \prime}(t)=v^{\prime}(t)=a(t)$
- SPEED
- speed: $|v(t)|$
- INCREASING - velocity and acceleration have the same signs
- DECREASING - velocity and acceleration have opposite signs
- Initially: $\mathrm{t}=\mathrm{o}$
- At Rest: $\mathrm{v}(\mathrm{t})=0$
- Particle Moving Right: $v(t)>0$
- Particle Moving Left: $\mathrm{v}(\mathrm{t})<0$
- Total Distance on [a, b]: $\int_{a}^{b}|v(t)| d t$
- Average velocity on [a, b]: $\frac{x(b)-x(a)}{b-a}$ or $\frac{1}{b-a} \int_{a}^{b} v(t) d t$
- Instantaneous velocity at $\mathrm{t}=\mathrm{a}: v(a)=x^{\prime}(a)$

31. Derivative Formulas
$\frac{d}{d x}[c]=0 \quad \frac{d}{d x}[x]=1 \quad \frac{d}{d x}[c x]=c \quad \frac{d}{d x}\left[x^{c}\right]=c x^{c-1}$
$\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
$\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
$\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) \quad \frac{d}{d x}[\ln x]=\frac{1}{x} \quad \frac{d}{d x}\left[e^{x}\right]=e^{x} \quad \frac{d}{d x}[\sin x]=\cos x$
$\frac{d}{d x}[\cos x]=-\sin x \quad \frac{d}{d x}[\tan x]=\sec ^{2} x \quad \frac{d}{d x}[\cot x]=-\csc ^{2} x \quad \frac{d}{d x}[\sec x]=\sec x \tan x$
$\frac{d}{d x}[\csc x]=-\csc x \cot x \quad \frac{d}{d x}[\arcsin x]=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x}[\arctan x]=\frac{1}{1+x^{2}}$
32. Integration Formulas
$\int d x=x+c$

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad \int \frac{d x}{x}=\ln |x|+c
$$

$\int e^{x} d x=e^{x}+c$

$$
\int \sin x d x=-\cos x+c \quad \int \cos x d x=\sin x+c
$$

$\int \tan x d x=-\ln |\cos x|+c$
$\int \csc x d x=-\ln |\csc x+\cot x|+c \quad \int \sec x d x=\ln |\sec x+\tan x|+c$
$\int \cot x d x=\ln |\sin x|+c$
$\int \sec ^{2} x d x=\tan x \quad \int \csc ^{2} x d x=-\cot x+c$
$\int \sec x \tan x d x=\sec x+c$
$\int \csc x \cot x d x=-\csc x+c \quad \int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+c$ $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+c$

