89.)
$$f(x) = 2x\sqrt{x-6}$$
 $(f^{-1})'(40) = \frac{4}{9}$
 $40 = 2x\sqrt{x-6}$ $f^{-1}:(40, 1)$
 $10 = x$ $f:(0,40)$

57.)
$$f(x) = arccosx$$

$$f'(x) = \frac{-1}{\sqrt{1-x^2}}$$

$$+2 = \frac{+1}{\sqrt{1-x^2}}$$

$$2\sqrt{1-x^2} = 1$$

$$\sqrt{-x^2} = \sqrt{x-\frac{x}{2}}$$

54.)
$$y = axcsec 4x$$

$$y' = \frac{4}{|4x|\sqrt{16x^2 - 1}}$$

$$y' = \frac{1}{|4x|\sqrt{16x^2 - 1}}$$

25.)
$$g(x) = 3arccos \frac{x}{2}$$

$$g'(x) = 3\left(\frac{-1}{1 - \frac{x^{2}}{4}}\right)$$

$$= \frac{-3}{2} \frac{-3}{1 - \frac{x^{2}}{4}}$$

$$= -3$$

$$\sqrt{4 - x^{2}}$$

41.)
$$g(t) = t_{0} (arcsint)$$

$$g(t) = \frac{t}{\sqrt{1-t^{2}}}$$

$$g'(t) = \frac{(1-t^{2})^{1/2}(1+t^{2})(t/2t)}{1-t^{2}} + \frac{t}{\sqrt{1-t^{2}}}$$

$$= \frac{1-t^{2}}{1-t^{2}} + \frac{t}{\sqrt{1-t^{2}}} = \frac{1-t^{2}+t^{2}}{(1-t^{2})^{3/2}} = \frac{1-t^{2}+t^{2}}{(1-t^{2})^{3/2}}$$

$$= \frac{1-t^{2}+t^{2}}{(1-t^{2})^{3/2}} = \frac{1-t^{2}+t^{2}}{(1-t^{2})^{3/2}} = \frac{1-t^{2}+t^{2}}{(1-t^{2})^{3/2}}$$

- Application of the Derivative: maximize, minimize values where is a particle moving to the left (right); slope, rate of change				
- Rate of <u>Change</u> (definition): <u>Change in y divided by change in x</u> (slope)				
Examples:				

$$3(3t+2)$$

$$3t+2$$

$$A = 3(3t+2)^{2}$$

$$A' = (6)(3t+2) \cdot 3$$

$$A'' = 18(3t+2)$$

$$A'(1) = 18 \cdot 5 = 90 \text{ m/hr}$$

$$e \times 2$$

$$P'(2) = 31.55 \text{ bacteria/hr}$$

When you are asked to find the rate of change, you are finding the slope (derivative).

ex:

The temperature, in degrees Fahrenheit (°F), of water in a pond is modeled by the function H given by $H(t) = 55 - 9\cos\left(\frac{2\pi}{365}(t+10)\right)$, where t is the number of days since January 1 (t = 0). What is the instantaneous rate of change of the temperature of the water at time t = 90 days?

- (A) 0.114°F/day
- (B) 0.153°F/day
- (C) 50.252°F/day
- (D) 56.350°F/day

	Rectilinear Motion Problems – When we talk about these types of problems, we often talk about ree types of functions Position:				
	Notation: $x(t)$, $s(t)$				
	Application(s): where is the particle at $t = 2$; what is the max distance from the origin?				
2.	Velocity: change in distance over change in time				
	Notation: $s'(t)$, $x'(t)$, $v(t)$				
	*				
	Application(s): what is the velocity at $t = 2$; when is the velocity 5 m/sec				
3.	Acceleration change in velocity over change in time				
	Notation: $s''(t)$, $x''(t)$, $v'(t)$, $a(t)$				
	*				
	Application(s): what is the acceleration at t = 3? What is the acceleration				

Ex 3: At time t=0 seconds a diver jumps from a platform diving board that is 32 feet above the water.

The position of the diver is given by $s(t) = -16t^2 + 16t + 32$. a) When does the diver hit the water? $\leq (\pm) = \bigcirc$

s the diver hit the water?
$$= 0$$

$$0 = -16t^{2} + 16t + 32$$

$$0 = -16(t^{2} - t - 2) = -16(t - 2)(t + 1)$$
b) What is the diver's velocity at impact?
$$t = 2sec$$

$$t = 2sec$$

- Average Velocity vs. Instantaneous Velocity - Average Velocity: change in distance	e over change	in time	
(You must be given an interval)			
// Formula: $\underline{S(b)} - \underline{S(a)}$	on La,	b (
// b-a			
- Instantaneous Velocity:			
the velocity at a point in time			
Formula: S'(a)			
no calculus regired	V	1	5 lope of
just slape of		JI -	tangent
Securit			

- Speed: \(\lambda (\psi) \)				
- Rest:the velocity is equal to 0				
- Left and Right Motion: -Left;where v(t) < 0				
- Right:				
-Changes Direction: when v(t) changes from positive to negative or				
negative to positive (changes signs)				

Ex 4: A billiard ball is dropped from a height of 100 ft, its height s at time t is given by the position function $s(t) = -16t^2 + 100$, where s is measured in feet and t is measured in seconds.

a) Find the average velocity over time interval [1, 2]. (1, 84)(2, 36)

a) Find the average velocity over time interval [1, 2].
$$(1, 84)(2, 36)$$

$$\frac{5(2)-5(1)}{2-1}=\frac{36-84}{2-1}=-48 \text{ ft/sec}$$

b) Find the Instantaneous velocity at the endpoints of the interval.

$$S'(t) = -32t$$

 $S'(1) = -32 + |sec|$ $S'(2) = -64 + |sec|$

c) Find the speed at the endpoints of the interval.

and at the endpoints of the interval.

$$|V(1)| = 32 \text{ ff/sec}$$

$$|V(2)| = 64 \text{ ff/sec}$$

Ex 5: A particle starts at time t=0 and moves along the x-axis so that its position at any time $t \ge 0$ is given by $x(t) = (t-1)^3(2t-3)$. a) Find the velocity of the particle at any time $t \ge 0$. Simplify.

$$\chi'(t) = (t-1)^{2}(8t-11)$$

b) Determine the values of t for which the particle is at rest.

$$(3+-1) = (4-1) = 8$$
At rest at $t = 1$, 11/8 because $v(t) = 0$
at these times.

1981 AB6/BC4

A particle moves along the x-axis so that at time t its position is given by $x(t) = \sin(\pi t^2)$ for $-1 \le t \le 1$.

- (a) Find the velocity at time t.
- (b) Find the acceleration at time t.
- (c) For what values of t does the particle change direction?
- (d) Find all values of t for which the particle is moving to the left.

Derivatives of inverse functions

Derivatives of inverse trig functions

Motion on a line