5.1/5.3 Slope Fields & Differential Equations

What is a Slope Field?

A set of segments representing the slope at various values of a differential equation.

*See printout.

Sketching Slope Fields 1. Calculate the slope at various coordinates 2. Sketch the segments representing the slope values

a)
$$\frac{dy}{dx} = 2$$
5 lope a lway ≤ 2

b)
$$\frac{dy}{dx} = x - 1$$

$$(0,0) : -1 \qquad (1,0) : 0$$

$$(0,1) \qquad (2,0) : 1$$

$$(0,2) \qquad (2,0) : 1$$

$$(0,-1) \qquad (0,-2)$$

c)
$$\frac{dy}{dx} = -3y$$

$$(0,0):0$$

 $(0,1):-2$

$$(p,-1): 2$$

$$(0,-1): 2$$

 $(0,2):-4$

$$d) \frac{dy}{dx} = 2x + y$$

e)
$$\frac{dy}{dx} = y + xy$$

Ex 2: Consider the differential equaiton given by $\frac{dy}{dx} = \frac{x}{y}$.

a) Sketch a slope field.

(D,0) und (y=0)

(D,I):D

- b) Sketch the solution curve that passes through the point (0, 1).
- c) Sketch the solution curve that passes through the point (0, -1).

Ex 3: Match each differential equation with the slope field.

$$1. \qquad \frac{dy}{dx} = \sin x$$

11.
$$\frac{dy}{dx} = x - y$$

III.
$$\frac{dy}{dx} = 2 - y$$
IV.
$$\frac{dy}{dx} = x$$

IV.
$$\frac{dy}{dx} = x$$

Ex 4: The slope field for a certain differential equation is shown below. Which of the following could be a particular solution to the differential equation?

(a) $y = \sin x$

(b) $y = \cos x$

(c) $y = x^2$

(d) $y = \frac{1}{6}x^3$

(e) y \ln x

Ex 5: The slope field for a certain differential equation is shown below. Which of the following could be a particular solution to the differential equation?

Ex 5: Verify the solution of the differential equation.

a)	Solution	Differential Equation
	$y = e^{-2x}$	$3y' + 5y = -e^{-2x}$

Ex 5: Verify the solution of the differential equation.

Solution Differential Equation
$$y = 3\cos x + \sin x$$
 $y'' + y = 0$

$$y'' = -3\sin x + \cos x \qquad (-3\cos x - \sin x) + (3\cos x + \sin x) = 0$$

$$y''' = -3\cos x - \sin x$$

Two Types of Solutions to Differential Equations

1. General solution (+c)

2. Particular Solution (must be given an initial condition) Ex 7: Find the general solution.

a)
$$y' = \frac{2x}{y}$$

$$\frac{dy}{dx} = \frac{2x}{y}$$

$$\int y \, dy = \int 2x \, dx$$

$$\int y \, dy = \int 2x \, dx$$

$$\int 2y^2 + C_1 = x^2 + C_2$$

$$\int 2y^2 - x^2 + C$$

Separating variables: x's go with dx y's go with dy

You do not have to get y by itself for a general solution

But for particular, you will.

Ex 7: Find the general solution.

b)
$$y' = 3y$$

$$\frac{dy}{dx} = 3y$$

$$\frac{dy}{y} = 3dx$$

$$\frac{dy}{y} = 3x + 0$$

$$\begin{vmatrix} y \\ = e \end{vmatrix} = \begin{vmatrix} 3x \\ c \end{vmatrix}$$

$$\begin{vmatrix} y \\ = \end{vmatrix} = \begin{vmatrix} 3x \\ e \end{vmatrix}$$

Ex 8: Find the particular solution.

a)
$$y' = 7y$$
, (10,1)
$$\frac{dy}{dx} = 7y$$

$$\int \frac{dy}{dx} = 7dx$$

$$\int \frac{dy}{dx} = \sqrt{7}dx$$

$$\int \frac{1}{\sqrt{7}} = C$$

$$\int \frac{1}$$

Ex 8: Find the particular solution.
b)
$$y' = \frac{x}{y}$$
, (o, -1) $y' = \frac{x}{y}$, (o, -1) $y' = \frac{x}{y}$, $y' =$

Ex 8: Find the particular solution.

c)
$$y' = \frac{y}{x^2}$$
, (1,3)
$$3 = Ce^{-1}$$

$$3e = C$$

$$3e = C$$

$$|y| = \sqrt{2} + C$$

Ex 9: The rate of change of y with respect to x is proportional to the difference between x and 4. Write a differential equation.

 $\frac{dy}{dx} = K(x-4)$ constant of proportionality

The rate of change of y with respect to x is inversely proportional to the square root of x.

$$\frac{dy}{dx} = \frac{K}{\sqrt{X}}$$

Ex 10: The rate of change of y with respect to x varies directly with the square of y. Write a differential equation.

$$\frac{dy}{dx} = K y^{2}$$

$$\frac{dy}{dx} = K dx$$

$$\int y^{2} dy = K dx$$

$$-\frac{1}{y} = K X + C$$

$$\frac{1}{y} = Kx + C$$

$$\frac{1}{y} = -Kx - C$$

$$\frac{1}{y} = Kx + C$$

$$\frac{1}{y} = \frac{1}{Kx + C}$$

$$y = \frac{1}{Kx + C}$$

Ex 11:

Consider the differential equation $\frac{dy}{dx} = (y-1)^2 \cos(\pi x)$.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.)

(b) There is a horizontal line with equation y = c that satisfies this differential equation. Find the value of c.

Ex 12:

Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.

- (a) Find the slope of the graph of f at the point where x = 1.
- (b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate f(1.2).
- (c) Find f(x) by solving the separable differential equation $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$ with the initial condition f(1) = 4.
- (d) Use your solution from part (c) to find f(1.2).

Ex 13:

Consider the differential equation $\frac{dy}{dx} = \frac{3-x}{y}$.

- (a) Let y = f(x) be the particular solution to the given differential equation for 1 < x < 5 such that the line y = −2 is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer.
- (b) Let y = g(x) be the particular solution to the given differential equation for −2 < x < 8, with the initial condition g(6) = −4. Find y = g(x).

Ex 14:

- Consider the differential equation $\frac{dy}{dx} = x^4(y-2)$.
- (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
 (Note: Use the axes provided in the test booklet.)
- (b) While the slope field in part (a) is drawn at only twelve y < 2 points, it is defined at every point in the xy-plane. Describe $x \neq 0$ all points in the xy-plane for which the slopes are negative.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0.

$$\frac{\partial y}{y-2} = x^{4} dx$$

$$\frac{1}{2} - \frac{1}{2} = \frac{x^{5}}{5} + C$$

$$|y-2| = Ce^{x5/8}$$
 (D,D)
 $|y-2| = 2e^{x5/8}$ (D,D)
 $|y-2| = 2e^{x5/8}$ (D,D)
 $|y-2| = +2e^{x5/8}$
 $|y-2| = +2e^{x5/8}$