Chapter 1 Topic to review: IVT

The test is ALL of chapter 2 so review

Definition of derivative
Alternate Form of Derivative
Recognizing a limit as a difference quotient (derivative)
Differentiability
ALL derivative formulas
Tangent line/normal line
Motion on a line (include units of measure)
Average velocity (average rate of change) No calculus needed!

PLUS new topics: implicit differentiation

log differentiation Derivative of inverse Inverse trig derivatives

related rates

Need extra practice? Use the previous ch 2a review and textbook qustions

$$m = 1$$

$$M = 1$$

$$M = 1$$

$$M = 1$$

$$|\inf(x) \neq |\inf(x)|$$

$$|\inf(x) \neq |\inf(x)|$$

$$|x \rightarrow 2^{-}|$$

$$|x \rightarrow 2^{+}|$$

$$|x \rightarrow 2^{+}|$$

$$V(t) = (t-4)(t-6)$$
 $t \ge D$

When is the velocity positive? Justify.

(0,4) and (6, inf) because v(t) > 0 on these intervals.

When does the particle change direction?

At t = 4 and 6 because the sign of v(t) changes at these times.

$$g(x) = x^{3} + 4x + 1$$

$$g'(x) = 3x^{2} + 4$$

$$g'(-1) = 7$$

$$g'(-1) = 7$$

$$g'(-1) = 7$$

Write an equation of the normal line to $g^{-1}(x)$ at x = -4.

$$y + 1 = \frac{7}{2me_{rice/}} \times + 4$$

Since f(x) is continuous on [a,b] and f(a) < 0 < f(b) by IVT there must exist a value c on [a,b] such that f(c) = 0

$$y' = \frac{u'}{1 - u^2}$$

$$y' = \frac{u'}{1 + u^2}$$

$$y' = \frac{u'}{|u| \sqrt{u^2 - 1}}$$

$$\sin(y) = \arcsin(x)$$

$$\int \sin(y) = \arcsin(x)$$

$$\int \cos(y) = \sin(x)$$

$$\int \cos(x) = \sin(x)$$

$$\lim_{X \to T} \frac{Cosx + 1}{x - \pi}$$

$$f(x) = cosx$$

$$C = \pi$$

$$f'(x) = -sinx$$

$$f'(\pi) = 0$$

20c)
$$\frac{dV}{dt} = \frac{dr}{dt}$$
 b

 $4\pi r^2 = \frac{dr}{dt}$
 $r^2 = \frac{1}{4\pi}$
 $r^2 = \frac{1}{4\pi}$

$$V = 36\pi$$

$$\frac{4}{3}\pi r^{2} = 36\pi$$

$$r = 3$$

$$A = \pi r^{2}$$

$$\frac{dA}{d+} = 2\pi r$$

$$\frac{dA}{d+} = 2\pi r$$

3)
$$\frac{dr}{dt} = \frac{dh}{dt} = \frac{1}{2}$$

$$\frac{d}{dt} \left(V = \frac{1}{3} \pi r r \right)$$

$$\frac{dV}{dt} = \frac{\pi}{3} \left(r^2 \frac{dh}{dt} + h \cdot 2r \frac{dr}{dt} \right)$$

$$\ln \left(y\right) = \frac{\sqrt{x}}{(x+1)^2}$$

$$\ln \left(y\right) = \frac{1}{2} \ln x - 2 \ln (x+1) \frac{d}{dx}$$

$$\frac{1}{\sqrt{x}} \frac{dy}{dx} = \left(\frac{1}{2x} - \frac{2}{x+1}\right) \frac{y}{(x+1)^2}$$

23b. A = Square-circle $A = 4r^2 - \pi r^2$

