

 $S = \begin{cases} x-axis \\ squares \\ S = (\sqrt{\ln x} - D) \end{cases}$ $S = \begin{cases} \sqrt{\ln x} + D \\ \sqrt{1} + \sqrt{1}$

3.)
$$y = e^{-x} x = 3$$
, $x - axis$, $y - axis$

$$\begin{cases} e^{-2x} dx \\ -\frac{1}{2}e^{-2x} \end{cases}$$

$$5 = e^{-x}$$

$$-\frac{1}{2}(e^{-b} - 1)$$

Ly-axis y = 2-x $\pm \sqrt{2-y} = x$ $S = \sqrt{2-y}$

 $\frac{2}{5}\left(\frac{5^{2}}{3}\right)dy$ $\frac{2}{3}\left(\frac{2-y}{3}\right)dy$

6.2 Volume: Solids Of Revolution

Disk Method

Disk Method

To find the volume of a solid of revolution with the disk method, use one of the formulas below. (See Figure 6.15.)

Horizontal Axis of Revolution

Volume =
$$V = \pi \int_a^b [R(x)]^2 dx$$

Vertical Axis of Revolution

Volume =
$$V = \pi \int_{c}^{d} [R(y)]^{2} dy$$

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$, x = 0, x = 1 and the x-axis about the x-axis.

$$\sqrt{-\pi} \int (\sqrt{x})^2 dx = \pi \int x dx$$

R(x)=((x-0)

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$, x = 0, x = 1 and the x-axis about the line x=1.

$$V = TT \left(\left(\frac{1}{1 - y^2} \right)^2 dy \right)$$

$$R(y) = \left(\left(\frac{1}{1 - y^2} \right)^2 + \left(\frac{1}{1 - y^2} \right)^2 dy$$

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded in the first

quadrant by the graphs of $y = x^3$ and y = 8 hariz-

about the line y=8.

 $11 \int (8-x^3)^2 dx$

Q(x)= 8-x3

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded in the first

quadrant by the graphs of $y = x^3$ and y = 8

about the y-axis.

 $\pi = \left(\sqrt[3]{y} \right)^2 dy$

Ry)= Ty-0

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded in the first quadrant by the graphs of $x = y - y^2$ and the y-axis about the y-axis.

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded by the graphs of $f(x) = 2 - x^2$ and g(x) = 1 about the line y=1.

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded by the graphs of $f(x) = 2 - x^2$, g(x) = 1 and h(x) = 0 about the x-axis.

Washer Method

$$A_{\text{washer}} = \pi R^2 - \pi r^2 = \pi \left(R^2 - r^2\right)$$

$$A_{\text{washer}} = \pi R^2 - \pi r^2 = \pi \left(R^2 - r^2 \right)$$

$$V_{\text{cylinder}} = \pi R^2 h - \pi r^2 h = \pi \left(R^2 - r^2 \right) h$$

Washer Method

Horizontal Axis of Revolution

$$V = \pi \int_{a}^{b} \left(\left[R(x) \right]^{2} - \left[r(x) \right]^{2} \right) dx$$

Vertical Axis of Revolution

$$V = \pi \int_{a}^{b} \left(\left[R(y) \right]^{2} - \left[r(y) \right]^{2} \right) dy$$

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded by the graphs

of $y = e^x$, y = 0, x = 0 and x = 1 about the line y = -1.

$$T = \begin{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ (e^{x}+1)^{2} & -(1)^{2} \end{pmatrix} d \end{pmatrix}$$

$$R(x) = e^{x} - (-i) = e^{x} + 1$$

 $\Gamma(x) = 0 - (-i) = 1$

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded in in the first quadrant by the graph of $y = 4 - x^2$ about the line x=7.

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$, x = 9 and the coordinate axes about the line...

b) y=3.

washer washer

$$\pi \int_{0}^{3} \left(y^{2} - 9\right) dy$$

 $\pi = \left(\left(3 - 0 \right) - \left(3 - 1 \right) \right)$

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$, x = 9 and the coordinate axes about the line...

a) x=9.

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$, x = 9 and the coordinate axes about the line...

b) y=3.

ex: Set up an integral expression to find the volume of the solid formed by revolving the region bounded in in the third quadrant by the graphs of

 $y = x^2 - 5$, $x = -\sqrt{5}$ and y = -6 about the y-axis.