6.1 Area Between Two Curves

Area =
$$\int_{\mathcal{Q}}^{b} (f(x) - g(x)) dx$$

a)
$$y = e^{x}$$
, $y = x$, $x = 0$, $x = 1$

$$e^{x} - \frac{1}{2}x$$

b)
$$y = \tan x$$
, $y = 2\cos x$, $0 \le x \le \frac{\pi}{2}$

b)
$$y = \tan x$$
, $y = 2\cos x$, $0 \le x \le \frac{\pi}{4}$

$$A = \begin{cases} (2\cos x - + \cos x)dx \\ = 2\sin x + \ln|\cos x| \\ 0 \end{cases}$$

$$(\sqrt{2} + \ln\frac{\pi}{2}) - (0)$$

c)
$$f(x) = 2 - x^2$$
, $g(x) = x$

$$A = \begin{cases} (2 - x^2 - x) dx = 4.5 \\ -2 \end{cases}$$

d)
$$f(x) = 3x^3 - x^2 - 10x$$
, $g(x) = -x^2 + x$
 $|f(x)| - g(x)| |f(x)| = 20.16$
 $= 1.915$

e)
$$y = \frac{1}{1+x^2}$$
, $y = \frac{x^2}{2}$

$$\int (y_1 - y_2) dx = 1.237$$

f)
$$x = 4 - y^2$$
, $x = y - 2$

$$x = y - 2$$

ex:

a) Find the area bounded by

$$y = x$$
, $y = -x^3 + 2$, y-axis

ex:

b) Find the area bounded by

$$y = x$$
, $y = -x^3 + 2$, x-axis

ex: The line x=p divides the area bounded by $y = \sin x$ on $0 \le x \le \pi$ into 2 regions such that the area from $0 \le x \le p$ exceeds the area from $p \le x \le \pi$ by 1 square unit. Find p.

$$\int_{\text{Sinx}dx}^{\text{Rind p.}} \int_{\text{Sinx}dx}^{\text{Rind p.}} \int_{\text{Sinx}dx}^{\text{Ri$$

$$-\cos 2 + | = -\cos 7 + \cos 7 + | -2\cos 7 + |$$

2.

(Calculator permitted) Let R be the shaded region enclosed by the graphs of $y = e^{-x^2}$, $y = -\sin(3x)$, and the y-axis as shown at right. Which of the following gives the approximate area of the region R? (A) 1.139 (B) 1.445 (C) 1.869 (D) 2.114 (E) 2.340

5.

Let f and g be the functions given by $f(x) = e^x$ and $g(x) = \frac{1}{x}$. Which of the following gives the area of the region enclosed by the graphs of f and g between x = 1 and x = 2?

(A)
$$e^2 - e - \ln 2$$

(B)
$$\ln 2 - e^2 + e$$

(C)
$$e^2 - \frac{1}{2}$$

(A)
$$e^2 - e - \ln 2$$
 (B) $\ln 2 - e^2 + e$ (C) $e^2 - \frac{1}{2}$ (D) $e^2 - e - \frac{1}{2}$ (E) $\frac{1}{e} - \ln 2$

(E)
$$\frac{1}{e} - \ln 2$$

6.

Let R be the region in the first quadrant bounded by the x-axis, the graph of $x = y^2 + 2$, and the line x = 4. Which of the following integrals gives the area of R?

(A)
$$\int_{0}^{\sqrt{2}} \left[4 - \left(y^{2} + 2 \right) \right] dy$$
 (B)
$$\int_{0}^{\sqrt{2}} \left[\left(y^{2} + 2 \right) - 4 \right] dy$$
 (C)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \left[4 - \left(y^{2} + 2 \right) \right] dy$$
 (D)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \left[\left(y^{2} + 2 \right) - 4 \right] dy$$
 (E)
$$\int_{2}^{4} \left[4 - \left(y^{2} + 2 \right) \right] dy$$

7.

Which of the following gives the area of the region between the graphs of $y = x^2$ and y = -x from x = 0 to x = 3.

- (A) 2 (B) $\frac{9}{2}$ (C) $\frac{13}{2}$ (D) 13 (E) $\frac{27}{2}$

11.

What is the area of the region in the first quadrant bounded by the graph of $y = e^{x/2}$ and the line x = 2?

- (A) 2e-2 (B) 2e (C) $\frac{e}{2}-1$ (D) $\frac{e-1}{2}$ (E) e-1