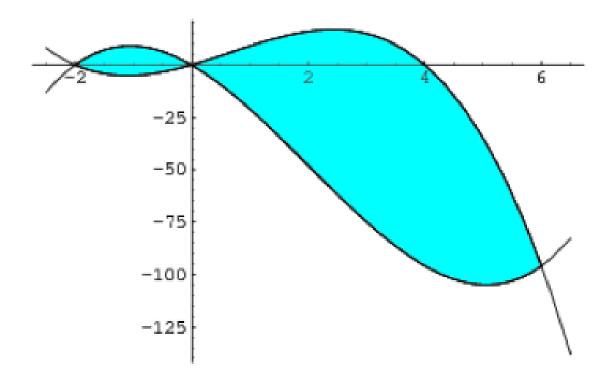

6.1 Area Between Two Curves



Area =

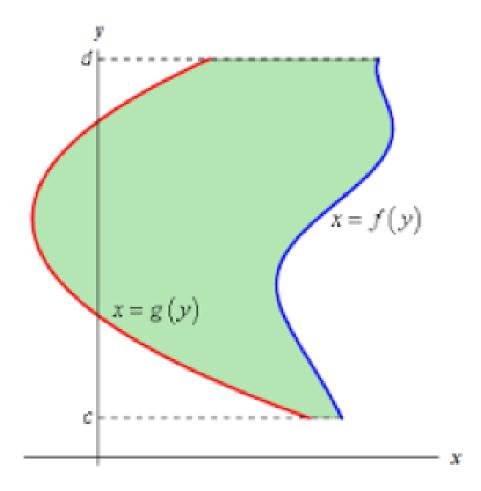
a)
$$y = e^x$$
, $y = x$, $x = 0$, $x = 1$

b)
$$y = \tan x$$
, $y = 2\cos x$, $0 \le x \le \frac{\pi}{4}$

c)
$$f(x) = 2 - x^2$$
, $g(x) = x$

(by hand) Area =

OR


(calculator) Area =

d)
$$f(x) = 3x^3 - x^2 - 10x$$
, $g(x) = -x^2 + x$

e)
$$y = \frac{1}{1+x^2}$$
, $y = \frac{x^2}{2}$

Area =

f)
$$x = 4 - y^2$$
, $x = y - 2$

ex:

a) Find the area bounded by

$$y = x$$
, $y = -x^3 + 2$, y-axis

ex:

b) Find the area bounded by

$$y = x$$
, $y = -x^3 + 2$, x-axis

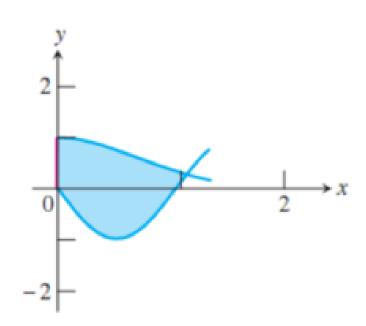
ex: The line x=p divides the area bounded by $y = \sin x$ on $0 \le x \le \pi$ into 2 regions such that the area from $0 \le x \le p$ exceeds the area from $p \le x \le \pi$ by 1 square unit. Find p.

1.

In which of the following models is $\frac{dy}{dt}$ directly proportional to y?

$$I. \quad y = e^{kt} + C$$

II.
$$y = Ce^{kt}$$


III.
$$y = 28^{kt}$$

IV.
$$y = 3\left(\frac{1}{2}\right)^{3t+1}$$

(A) I only (B) II only (C) I and II only (D) II and III only (E) II, III, and IV (F) all of them

2.

(Calculator permitted) Let R be the shaded region enclosed by the graphs of $y = e^{-x^2}$, $y = -\sin(3x)$, and the y-axis as shown at right. Which of the following gives the approximate area of the region R? (A) 1.139 (B) 1.445 (C) 1.869 (D) 2.114 (E) 2.340

3.

If
$$\frac{dy}{dt} = -2y$$
 and if $y = 1$ when $t = 0$, what is the value of t for which $y = \frac{1}{2}$?

(A)
$$-\frac{1}{2}\ln 2$$
 (B) $-\frac{1}{4}$ (C) $\frac{1}{2}\ln 2$ (D) $\frac{\sqrt{2}}{2}$ (E) $\ln 2$

(Calculator permitted) Population y grows according to the equation $\frac{dy}{dt} = ky$, where k is a constant and t is measured in years. If the population doubles every 10 years, then the value of k is

(A) 0.069

(B) 0.200 (C) 0.301 (D) 3.322

(E) 5.000

5.

Let f and g be the functions given by $f(x) = e^x$ and $g(x) = \frac{1}{x}$. Which of the following gives the area of the region enclosed by the graphs of f and g between x = 1 and x = 2?

(A)
$$e^2 - e - \ln 2$$

(B)
$$\ln 2 - e^2 + \epsilon$$

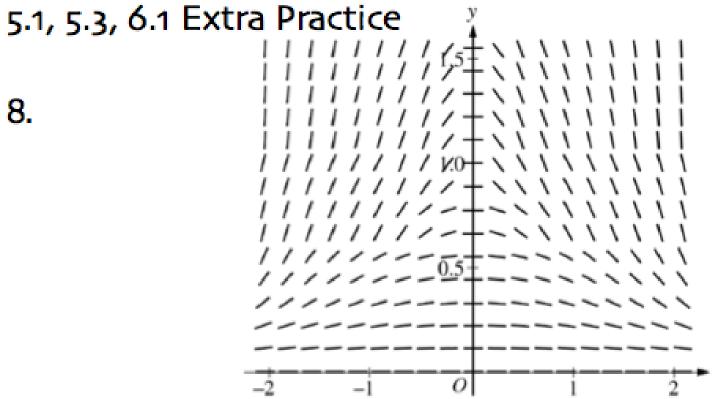
(C)
$$e^2 - \frac{1}{2}$$

(A)
$$e^2 - e - \ln 2$$
 (B) $\ln 2 - e^2 + e$ (C) $e^2 - \frac{1}{2}$ (D) $e^2 - e - \frac{1}{2}$ (E) $\frac{1}{e} - \ln 2$

(E)
$$\frac{1}{e} - \ln 2$$

6.

Let R be the region in the first quadrant bounded by the x-axis, the graph of $x = y^2 + 2$, and the line x = 4. Which of the following integrals gives the area of R?


(A)
$$\int_{0}^{\sqrt{2}} \left[4 - \left(y^{2} + 2 \right) \right] dy$$
 (B)
$$\int_{0}^{\sqrt{2}} \left[\left(y^{2} + 2 \right) - 4 \right] dy$$
 (C)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \left[4 - \left(y^{2} + 2 \right) \right] dy$$
 (D)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \left[\left(y^{2} + 2 \right) - 4 \right] dy$$
 (E)
$$\int_{2}^{4} \left[4 - \left(y^{2} + 2 \right) \right] dy$$

7.

Which of the following gives the area of the region between the graphs of $y = x^2$ and y = -x from x = 0 to x = 3.

- (A) 2 (B) $\frac{9}{2}$ (C) $\frac{13}{2}$ (D) 13 (E) $\frac{27}{2}$

8.

The slope field for a certain differential equation is shown above. Which of the following could be a solution to the differential equation with the initial condition y(0) = 1?

(A)
$$y = \cos x$$

(B)
$$y = 1 - x^2$$

(C)
$$y = e^x$$

(D)
$$y = \sqrt{1 - x^2}$$

(E)
$$y = \frac{1}{1 + x^2}$$

9.

Which of the following is the solution to the differential equation $\frac{dy}{dx} = e^{y+x}$ with the initial condition $y(0) = -\ln 4$?

- (A) $y = -x \ln 4$
- (B) $y = x \ln 4$
- $(C) \quad y = -\ln(-e^x + 5)$
- (D) $y = -\ln(e^x + 3)$
- (E) $y = \ln(e^x + 3)$

10.

If P(t) is the size of a population at time t, which of the following differential equations describes linear growth in the size of the population?

- (A) $\frac{dP}{dt} = 200$
- (B) $\frac{dP}{dt} = 200t$
- (C) $\frac{dP}{dt} = 100t^2$
- (D) $\frac{dP}{dt} = 200P$
- (E) $\frac{dP}{dt} = 100P^2$

11.

What is the area of the region in the first quadrant bounded by the graph of $y = e^{x/2}$ and the line x = 2?

- (A) 2e-2 (B) 2e (C) $\frac{e}{2}-1$ (D) $\frac{e-1}{2}$ (E) e-1