5.1/5.3 Slope Fields & Differential Equations

What is a Slope Field?

*See printout.

5.1/5.3 Slope Fields & Solving Differential Equations - Notes

- What is a Slope Field? Possible supe values for a

- Sketching a Slope Field
- calculate slopes
- draw slope segments

Ex 1: Sketch each slope field.

a) $\frac{dy}{dx} = 2$

b) $\frac{dy}{dx} = x - 1$

d) $\frac{dy}{dx} = 8x + y$

e) $\frac{dy}{dx} = y + xy$

Ex 2: Consider the differential equation given by $\frac{dy}{dx} = \frac{x}{y}$.

a) Sketch a slope field.

- b) On the slope field above, sketch a solution curve that passes through the point (o, 1).
- c) On the slope field above, sketch a solution curve that passes through the point (o, -1).

Ex 3: Match each differential equation with the slope field.

$$1. \qquad \frac{dy}{dx} = \sin x \quad C$$

II.
$$\frac{dy}{dx} = x - y \quad \square$$

(C)

(D)

III. $\frac{dy}{dx} = 2 - y$

IV.
$$\frac{dy}{dx} = x$$

Ex 4: The slope field for a certain differential equation is shown below. Which of the following could be a particular solution to the differential equation?

Ex 5: The slope field for a certain differential equation is shown below. Which of the following could be a particular solution to the differential equation?

Ex 5: Verify the solution of the differential equation.

a)	Solution	Differential Equation
	$y = e^{-2x}$	$3y' + 5y = -e^{-2x}$
$y=-2e^{-2x}$		
$3(-2e^{-1x}) + 5e^{-1x} = -e^{-1x}$		
-0^{-2x}		

Ex 5: Verify the solution of the differential equation.

b) Solution Differential Equation
$$y = 3\cos x + \sin x$$
 $y'' + y' = 0$

$$y'' = -3\cos x - \sin x$$

$$-3\cos x - \sin x + 3\cos x + \sin x = 0$$

$$0 = 0$$

Two Types of Solutions to Differential Equations

1. general (+c)
2. particular

Ex 7: Find the general solution.

a)
$$y' = \frac{2x}{y}$$

$$y \cdot \frac{dy}{dx} = \frac{2x}{y}$$

$$y \cdot \frac{dy}{dx} = 2x$$

$$x \cdot \frac{dy}{dx} = 2x$$

$$\begin{cases} y(y) = \int_{0}^{2} x \, dx \\ \Rightarrow y^{2} + C_{1} = x^{2} + C_{2} \\ \Rightarrow y^{2} = x^{2} + C_{2} \\ y = x^{2} + C_{3} \\ y = x^{2} + C_{3} \end{cases}$$

Ex 7: Find the general solution.

b)
$$y' = 3y$$

$$\frac{dy}{dx} = 3y$$

$$\frac{dy}{dx} = 3dx$$

$$\ln|y| = (3x + 0)$$

$$|y| = e^{3x+c}$$

$$|y| = e^{3x}$$

Ex 8: Find the particular solution.
b)
$$y' = \frac{x}{y}$$
, (o, -1) $\frac{1}{2}y^2 = \frac{1}{2}x^2 + \frac{1}{2}$
 $\frac{dy}{dx} = \frac{x}{y}$
 $y = \frac{1}{2}x^2 + \frac{1}{$

Ex 8: Find the particular solution.

c)
$$y' = \frac{y}{x^2}$$
, (1,3)

$$\frac{dy}{dx} = \frac{y}{x^2}$$

$$\frac{dy}{dx} = \frac{dx}{x^2}$$

$$\frac{dy}{dx} = \frac{dx}{x^2}$$

$$\frac{dy}{dx} = -\frac{1}{x} + C$$

$$|y| = e^{-1/x} + c$$
 $|y| = e^{-1/x}$
 $|y| = Ce^{-1/x}$
 $|y| = Ce^{-1/x}$
 $|y| = Ce^{-1/x}$
 $|y| = Ce^{-1/x}$
 $|y| = Ce^{-1/x}$

Ex 9: The rate of change of y with respect to x is proportional to the difference between x and 4. Write a differential equation.

differential equation. $\frac{dy}{dx} = K(x-4)$

Ex 10: The rate of change of y with respect to x varies directly with the square of y. Write a differential equation.

dy = Ky2

K: Constant of
proportionality

The rate of change of y is proportinal to y.

$$\frac{dy}{dx} = ky$$

$$\frac{dy}{dy} = kx + C$$

b) negative slopes when y < 2 but x is not 0.

Ex 14:

- Consider the differential equation $\frac{dy}{dx} = x^4(y-2)$.
- (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the test booklet.)
- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane. Describe all points in the xy-plane for which the slopes are negative.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0.

$$\frac{dy}{y-2} = x^4 dx$$
 $\frac{dy}{y-2} = \frac{x^4 dx}{5} + C$

$$3 = \frac{1}{2} =$$