4.4 The FUNdamental Theorem Of Calculus - cont.

ex:

Let *h* be the function defined by $h(x) = \frac{1}{\sqrt{x^5 + 1}}$. If *g* is an antiderivative of *h* and g(2) = 3, what is the value of g(4)?

- (A) -0.020
- (B) 0.152
- (C) 3.031
- (D) 3.152

4.4: FTC Part 2

- Accumulation Functions

The Definite Integral as a Number

The Definite Integral as a Function of x

In general, an accumulation function comes in the form:

$$F(x) = \int_{a}^{g(x)} f(t) dt,$$

- The 2nd FUNdamental Theorem of Calculus

THEOREM 4.13 The Second Fundamental Theorem of Calculus If f is continuous on an open interval I containing a, then, for every x in the interval,

$$\frac{d}{dx} \left[\int_{a}^{g(x)} f(t) dt \right] =$$

*The 2nd FUNdamental Theorem of Calculus is used to DIFFERENTIATE an accumulation function.

$$F(x) = \int_{3}^{x} t^2 dt$$

$$F(x) = \int_{3}^{x^3} t^2 dt$$

$$F(x) = \int_{3}^{x^3} t^2 dt$$

$$F(x) = \int_{1}^{x} \sin^3 t \, dt$$

$$F(x) = \int_{1}^{x^2} \sqrt{t^2 + 5} \, dt$$

$$F(x) = \int_{x}^{2} \sqrt{t^2 + 5} \, dt$$

ex: If $f(x) = \int_{1}^{x} \frac{t^4 + 1}{t} dt$ find f''(2).

4.4 Notes WKST

The graph of f(x) is shown below. If $g(x) = \int_{2}^{x} f(t)dt$, evaluate the following or explain why they do not exist.

*See printout.

g) On what interval does g(x) increase? Justify your answer

h) At what x-value(s) does g(x) have a point of inflection? Justify your answer. ex:

If
$$f(x) = \int_1^{x^3} \frac{1}{1 + \ln t} dt$$
 for $x \ge 1$, then $f'(2) =$

(A)
$$\frac{1}{1 + \ln 2}$$

(B)
$$\frac{12}{1 + \ln 2}$$

(C)
$$\frac{1}{1 + \ln 8}$$

(D)
$$\frac{12}{1 + \ln 8}$$

FR 16

Let f be a function defined on the closed interval [0, 7]. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x) = \int_2^x f(t) dt$.

- (a) Find g(3), g'(3), and g"(3).
- (b) Find the average rate of change of g on the interval $0 \le x \le 3$.
- (c) For how many values c, where 0 < c < 3, is g'(c) equal to the average rate found in part (b) ? Explain your reasoning.
- (d) Find the x-coordinate of each point of inflection of the graph of g on the interval 0 < x < 7. Justify your answer.

FR 13

Let g be a continuous function with g(2) = 5. The graph of the piecewise-linear function g', the derivative of g, is shown above for $-3 \le x \le 7$.

(d) Find the average rate of change of g'(x) on the interval $-3 \le x \le 7$. Does the Mean Value Theorem applied on the interval $-3 \le x \le 7$ guarantee a value of c, for -3 < c < 7, such that g''(c) is equal to this average rate of change? Why or why not?

FR 20

A test plane flies in a straight line with positive velocity v(t), in miles per minute at time t minutes, where v is a differentiable function of t. Selected

t (min)	0	5	10	15	20	25	30	35	40
v(t) (mpm)	7.0	9.2	9.5	7.0	4.5	2.4	2.4	4.3	7.3

values of v(t) for $0 \le t \le 40$ are shown in the table above.

- (c) The function f, defined by f(t) = 6 + cos(t/10) + 3sin(7t/40), is used to model the velocity of the plane, in miles per minute, for 0 ≤ t ≤ 40. According to this model, what is the acceleration of the plane at t = 23? Indicates units of measure.
- (d) According to the model f, given in part (c), what is the average velocity of the plane, in miles per minute, over the time interval 0 ≤ t ≤ 40?