4.1 Antiderivatives and Indefinite Integration

Anti Derivative Uncle Function are my favourite relations

- Antidifferentiation

Definition of Antiderivative

A function F is an **antiderivative** of f on an interval I when F'(x) = f(x) for all x in I.

Antidifferentiation by Trial and Error!

ex: Find a function, f(x), given its derivative f'(x).

a)
$$f'(x) = 2x$$

ex: Find a function, f(x), given its derivative f'(x).

b)
$$f'(x) = 3x^2$$

c)
$$f'(x) = x^4$$

d)
$$f'(x) = -50 \sin x$$

ex: Find a function, f(x), given its derivative f'(x).

e)
$$f'(x) = 2\cos 2x$$

f)
$$f'(x) = -x \sin x + \cos x$$

Representation of Antiderivatives

If
$$\frac{d}{dx}[f(x)] = f'(x)$$
 then $f(x)$ is called the "general

antiderivative" of f'(x).

ex: Find the antiderivative: $f'(x) = 12x^7$

Indefinite Integration

If F(x) is any anti-derivative of f(x) than the most general antiderivative of f(x) is called an <u>indefinite integral</u> and denoted,

Differentiation and Integration are INVERSE Operations

The inverse nature of integration and differentiation can be verified by substituting F'(x) for f(x) in the indefinite integration definition to obtain

$$\int F'(x) dx = F(x) + C.$$
 Integration is the "inverse" of differentiation.

Moreover, if $\int f(x) dx = F(x) + C$, then

$$\frac{d}{dx} \left[\int f(x) \ dx \right] = f(x).$$

Differentiation is the "inverse" of integration.

These two equations allow you to obtain integration formulas directly from differentiation formulas, as shown in the following summary.

- Basic Rules

Differentiation Rules	Integration Rules
$\frac{d}{dx}[kx] =$	$\int k dx =$
$\frac{d}{dx}[kf'(x)] =$	$\int kf(x)dx =$
$\frac{d}{dx}\big[f(x)\pm g(x)\big]=$	$\int [f(x) \pm g(x)] dx =$
$\frac{d}{dx}[x^n] =$	$\int x^n dx =$

Differentiation Rules	Integration Rules
$\frac{d}{dx}[\sin x] =$	$\int \sin x dx =$
$\frac{d}{dx}[\cos x] =$	$\int \cos x dx =$
$\frac{d}{dx}[\tan x] =$	$\int \sec^2 x dx =$
$\frac{d}{dx}[\csc x] =$	$\int \csc x \cot x dx =$
$\frac{d}{dx}[\sec x] =$	$\int \sec x \tan x dx =$
$\frac{d}{dx}[\cot x] =$	$\int \csc^2 x dx =$

Differentiation Rules	Integration Rules
$\frac{d}{dx}[e^x] =$	$\int e^x dx =$
$\frac{d}{dx}[a^x] =$	$\int a^x dx =$
$\frac{d}{dx}[\ln x] =$	$\int \frac{1}{x} dx =$

a)
$$\int x^5 dx =$$

b)
$$\int 5\sec^2 x \, dx =$$

c)
$$\int \sqrt{x} dx =$$

$$\int \frac{8}{x^2} dx =$$

e)
$$\int \frac{8}{x} dx =$$

f)
$$\int 2x \, dx =$$

$$\int \frac{1}{(2x)^3} dx =$$

h)
$$\int (4x^3 - 3^x + \sin x - 5e^x) dx =$$

i)
$$\int \frac{x^7 - 5x^3 + 2x}{x^4} dx =$$

$$\int (1+3x)x^2 dx =$$

$$k) \int \frac{\sin x}{\cos^2 x} dx =$$

$$\int (1 + \cot^2 x) dx =$$

 Differential Equations
 A differential equation is an equation involving a derivative.

- Differential Equations Have 2 Types of Solutions
 - 1. General Solution general antiderivative

Particular Solution - an antiderivative that passes through a given initial condition.

ex:
$$f'(x) = 3x^2 - 1$$

a) Find the general solution.

b) Find the particular solution that satisfies the intitial condition f(2) = 4.

- Total Distance (by hand)

ex: A particles moves on the x-axis so that its position at any time is given by: $x(t) = 4t^3 - 18t^2 + 15t - 1$

Find the total distance traveled by the particle from t=0 to t=3.

FR 2

A particle moves on the x-axis so that its velocity at any time $t \ge 0$ is given by $v(t) = 12t^2 - 36t + 15$. At t = 1, the particle is at the origin.

- (a) Find the position x(t) of the particle at any time $t \ge 0$.
- (b) Find all values of t for which the particle is at rest.
- (c) Find the maximum velocity of the particle for $0 \le t \le 2$.
- (d) Find the total distance traveled by the particle from t = 0 to t = 2.

1.

If
$$f'(x) = 12x^2 - 6x + 1$$
, $f(1) = 5$, then $f(0)$ equals
(A) 2 (B) 3 (C) 4 (D) -1 (E) 0

2.

Find all functions
$$g$$
 such that $g'(x) = \frac{5x^2 + 4x + 5}{\sqrt{x}}$
(A) $g(x) = 2\sqrt{x}\left(x^2 + \frac{4}{3}x - 5\right) + C$ (B) $g(x) = 2\sqrt{x}\left(x^2 + \frac{4}{3}x + 5\right) + C$
(C) $g(x) = 2\sqrt{x}\left(5x^2 + 4x - 5\right) + C$ (D) $g(x) = \sqrt{x}\left(x^2 + \frac{4}{3}x + 5\right) + C$
(E) $g(x) = \sqrt{x}\left(5x^2 + 4x + 5\right) + C$

3.

Determine
$$f(t)$$
 when $f''(t) = 2(3t+1)$ and $f'(1) = 3$, $f(1) = 5$.
(A) $f(t) = 3t^3 - 2t^2 + 2t + 2$ (B) $f(t) = t^3 - 2t^2 + 2t + 4$
(C) $f(t) = 3t^3 + t^2 - 2t + 3$ (D) $f(t) = t^3 - t^2 + 2t + 3$
(E) $f(t) = t^3 + t^2 - 2t + 5$

4.

Consider the following functions:

$$I. F_1(x) = \frac{\sin^2 x}{2}$$

$$II. \quad F_2(x) = -\frac{\cos 2x}{4}$$

III.
$$F_3(x) = -\frac{\cos^2 x}{2}$$

Which are antiderivatives of $f(x) = \sin x \cos x$? (Hint: take the derivative of each and manipulate) (A) II only (B) I only (C) I & III only (D) I, II, & III (E) I & II only

5.

A particle moves along the x-axis. The velocity of the particle at time t is $6t - t^2$. What is the total distance traveled by the particle from time t = 0 to t = 3?

- (A) 3
- (B) 6
- (C) 9
- (D) 18
- (E) 27

6.

A particle moves along the x-axis so that its acceleration at time t is a(t) = 8 - 8t in units of feet and seconds. If the velocity of the particle at t = 0 is 12 ft/sec, how many seconds will it take for the particle to reach its furthest point to the right?

(A) 6 seconds (B) 5 seconds (C) 3 seconds (D) 7 seconds (E) 4 seconds