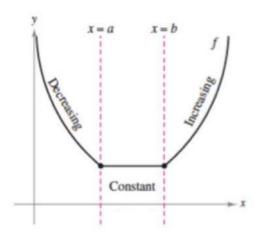
3.3 Increasing and Decreasing Functions and The First Derivative Test

Definitions of Increasing and Decreasing Functions

A function f is **increasing** on an interval when, for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) < f(x_2)$.

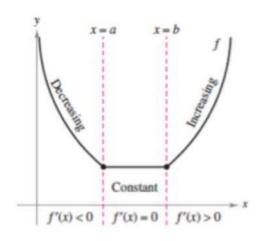
A function f is **decreasing** on an interval when, for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) > f(x_2)$.

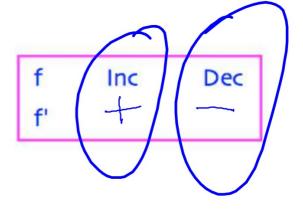


THEOREM 3.5 Test for Increasing and Decreasing Functions

Let f be a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

- **1.** If f'(x) > 0 for all x in (a, b), then f is increasing on [a, b].
- **2.** If f'(x) < 0 for all x in (a, b), then f is decreasing on [a, b].
- **3.** If f'(x) = 0 for all x in (a, b), then f is constant on [a, b].





ex: On what interval(s) is f(x) increasing and decreasing? Justify your answer.

a)
$$f(x) = x^3 - \frac{3}{2}x^2$$

$$f'(x) = 3x^2 - 3x$$

$$0 = 3x(x - i)$$

f is increasing on (-inf, 0) U (1, inf) because f'(x) > 0 on these intervals

f is decreasing on (0, 1)because f'(x) < 0on this interval.

$$\frac{+}{-10} \frac{+}{0} \frac{+}{2} \frac{+}{10} \Rightarrow f$$
incr decr incr

ex: On what interval(s) is f(x) increasing and decreasing?

b)
$$f(x) = xe^{-x}$$

 $f'(x) = -xe^{-x} + e^{-x}$
 $O = -e^{-x}(x-1)$

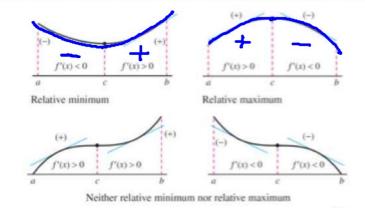
Increasing on (-inf, 1); decreasing on (1, inf)

 $D:(-\infty,\infty)$

THEOREM 3.6 The First Derivative Test

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then f(c) can be classified as follows.

- **1.** If f'(x) changes from negative to positive at c, then f has a relative minimum at (c, f(c)).
- **2.** If f'(x) changes from positive to negative at c, then f has a relative maximum at (c, f(c)).
- **3.** If f'(x) is positive on both sides of c or negative on both sides of c, then f(c) is neither a relative minimum nor a relative maximum.



ex: Determine the value(s) of x in which f(x) has local extrema. Justify your answer.

a)
$$g(x) = \frac{x^2 + 1}{x^2 - 4}$$

 $g'(x) = \frac{-1Dx}{(x^2 - 4)^2}$ $g(x) = \frac{-1Dx}{(x^2 - 4)^2}$ $g(x) = \frac{-1Dx}{(x^2 - 4)^2}$ $g(x) = \frac{-1Dx}{(x^2 - 4)^2}$

Relative maximum at x = 0 because f'(x) changes from positive to negative at x = 0.

ex: Determine the value(s) of x in which f(x) has local extrema. Justify your answer.

b)
$$f(x) = \frac{x^3}{3} - \ln 2x$$

X=1

11/2 10

Relative minimum x = 1because f'(x) changes from negative to positive at this point.

ex:
$$f(x) = (x-3)^4 \cdot (x+1)^3 \leftarrow odd(cross)$$

ex: $f(x) = (x-3)^4 \cdot (x+1)^3 \leftarrow odd(cross)$

a) At what x-values does f(x) have relative extrema? Justify your answer.

Relative minimum at x = -1 because f'(x) changes from negative to positive at this point.