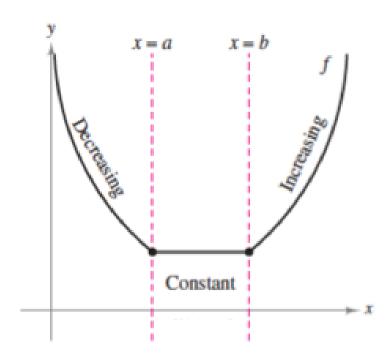
3.3 Increasing and Decreasing Functions and The First Derivative Test

Definitions of Increasing and Decreasing Functions

A function f is **increasing** on an interval when, for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) < f(x_2)$.

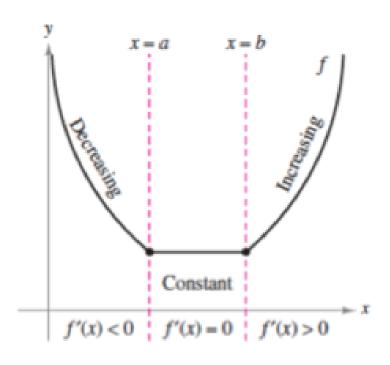
A function f is **decreasing** on an interval when, for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) > f(x_2)$.



THEOREM 3.5 Test for Increasing and Decreasing Functions

Let f be a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

- **1.** If f'(x) > 0 for all x in (a, b), then f is increasing on [a, b].
- **2.** If f'(x) < 0 for all x in (a, b), then f is decreasing on [a, b].
- **3.** If f'(x) = 0 for all x in (a, b), then f is constant on [a, b].



f Inc Dec f' ex: On what interval(s) is f(x) increasing and decreasing? Justify your answer.

a)
$$f(x) = x^3 - \frac{3}{2}x^2$$

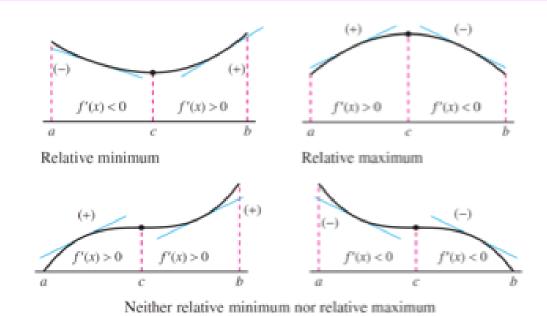
ex: On what interval(s) is f(x) increasing and decreasing? Justify your answer.

b)
$$f(x) = \sqrt{x}e^{-x}$$

THEOREM 3.6 The First Derivative Test

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then f(c) can be classified as follows.

- 1. If f'(x) changes from negative to positive at c, then f has a *relative minimum* at (c, f(c)).
- **2.** If f'(x) changes from positive to negative at c, then f has a *relative maximum* at (c, f(c)).
- **3.** If f'(x) is positive on both sides of c or negative on both sides of c, then f(c) is neither a relative minimum nor a relative maximum.



ex: Determine the value(s) of x in which f(x) has local extrema. Justify your answer.

a)
$$f(x) = \frac{x^2}{x+1}$$

ex: Determine the value(s) of x in which f(x) has local extrema. Justify your answer.

b)
$$f(x) = \frac{x^3}{3} - \ln 2x$$

ex:
$$f(x) = \begin{cases} -x^3 + 1, & x \le 1 \\ x^2 - 4x, & x > 1 \end{cases}$$

a) At what x-values does f(x) have relative extrema? Justify your answer.

ex:
$$f(x) = \begin{cases} -x^3 + 1, & x \le 1 \\ x^2 - 4x, & x > 1 \end{cases}$$

a) On what intervals is f(x) increasing and decreasing?
Justify your answer.

ex:
$$f(x) = (x-3)^{4/5} (x+1)^{1/5}$$

a) At what x-values does f(x) have relative extrema? Justify your answer.

ex:
$$f(x) = (x-3)^{4/5} (x+1)^{1/5}$$

a) On what intervals is f(x) increasing and decreasing?
Justify your answer.

3.3 WKST

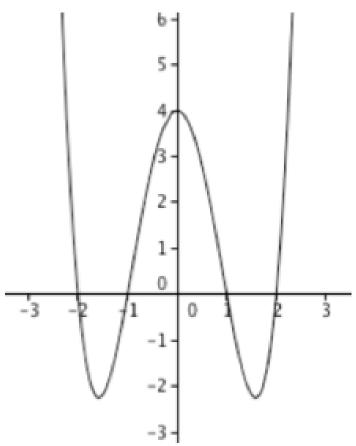
The figures below show the graph of f'. For each of the functions find:

- a) all x-values of critical numbers of f.
- b) intervals of increasing and decreasing on f.
- c) all x-values at which f has relative extrema.

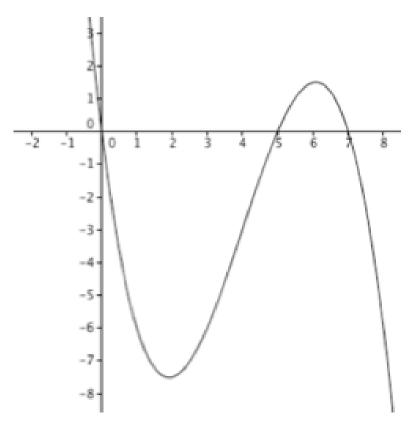
JUSTIFY all of your answers using f'.

3.3 WKST

1.



3.3 WKST



ex:

x	0	2	4	8
f(x)	3	4	9	13
f'(x)	0	1	1	2

The table above gives values of a differentiable function f and its derivative at selected values of x. If h is the function given by h(x) = f(2x), which of the following statements must be true?

- (I) h is increasing on 2 < x < 4.
- (II) There exists c, where 0 < c < 4, such that h(c) = 12.
- (III) There exists c, where 0 < c < 2, such that h'(c) = 3.
- (A) II only
- (B) I and III only
- (C) II and III only
- (D) I, II, and III

ex:

The derivative of a function f is given by $f'(x) = e^{\sin x} - \cos x - 1$ for 0 < x < 9. On what intervals is f decreasing?

- (A) 0 < x < 0.633 and 4.115 < x < 6.916
- (B) 0 < x < 1.947 and 5.744 < x < 8.230
- (C) 0.633 < x < 4.115 and 6.916 < x < 9
- (D) 1.947 < x < 5.744 and 8.230 < x < 9

ex:

The derivative of the function f is given by $f'(x) = -\frac{x}{3} + \cos(x^2)$. At what values of x does f have a relative minimum on the interval 0 < x < 3?

- (A) 1.094 and 2.608
- (B) 1.798
- (C) 2.372
- (D) 2.493