47.) f(x) = cosx + tanx [0, T]VA@ $x = \frac{\pi}{2}$ (discontinuity)

MUT does not apply

3.2: Tabular Data (Theorems)

ex: Consider the differentiable function v(t) with select values given in the table below.

t (min)	0	5	10	15	20	25	30
v(t) (meters/min)	7	9.2	9.5	7	4.5	2.4	2.4
		1-					

a) Estimate a(7). Indicate units of measure.

$$\frac{V(10) - V(5)}{10 - 5} = \frac{9.5 - 9.2}{5} = \frac{.3}{5}$$

$$= \frac{3}{50} \text{ m/min}^{2}$$

t (min)	0	5	10	15	20	25	30
v(t) (meters/min)	7	9.2	9.5	7	4.5	2.4	2.4

b) Estimate a(20). Indicate units of measure.

$$\frac{2.4-4.5}{25-20}$$
 $-\frac{21}{50}$ m/min²

t (min)	0	5	10	15	20	25	30
v(t) (meters/min)	7	9.2	9.5	7	4.5	2.4	2.4

c) What is the smallest number of instances in which v(t)=8 on (0,30)? Justify your answer.

Two; On the interval (0,5) and (10,15), since v(t) is diff. and cont. and v(0) < 8 < v(5) and v(15) < 8 < v(10) by IVT there must exist a value c such that v(t) = 8 on both intervals.

							1
t (min)	0	5	10	15	20	25	30
v(t) (meters/min)	7	9.2	9.5	7	4.5	2.4	2.4
	K						

- d) What is the smallest number of instances in which a(t)=0 on (0, 30)? Justify your answer.
- 2; Since v(t) is diff. and cont. and v(0)=v(15) and v(25) = v(30) then by Rolle's Theorem there must exist at least 1 value c in (0,15) and (25,30) such that a(c) = 0.

		\					
t (min)	0	5	10	15	20	25	30
v(t) (meters/min)	7	9.2	9.5	7	4.5	2.4	2.4
	$\overline{}$				7		

e) On the interval (0, 20) must there be a time when a(t)=-1/8? Justify your answer.

Yes, since v(t) is differentiable and continuous, and the slope on the interval from (0,20) is -1/8, there must exist a value c such that a(c) = -1/8

$$\frac{V(20)-V(0)}{2D-0} = \frac{4.5-7}{2D} = \frac{-1}{8} \qquad V'(c) = -\frac{1}{8}$$

2.

Which of the following functions below satisfy the conditions of the MVT?

I. $f(x) = \frac{1}{x+1}$, [0,2] II. $f(x) = x^{1/3}$, [0,1] III. f(x) = |x|, [-1,1]a) I only

$$1. f(x) = \frac{1}{x+1}, [0,2]$$

II.
$$f(x) = x^{1/3}$$
, [0,1]

III.
$$f(x) = |x|, [-1,1]$$

- a) I only
 b) I and II only
 c) I and III only
 d) II only
 e) II and III only

4.

If f is a continuous function on [a,b], which of the following is necessarily true?

- (A) f' exists on (a,b). (B) If $f(x_0)$ is a maximum of f, then $f'(x_0) = 0$.
 - (C) $\lim_{x \to x_0} f(x) = f\left(\lim_{x \to x_0} x\right)$ for $x_0 \in (a,b)$
- (D) f'(x) = 0 for some $x \in [a,b]$
- (E) The graph of f' is a straight line.

If f is continuous for $a \le x \le b$ and differentiable for a < x < b, which of the following could be false?

- (A) $f'(c) = \frac{f(b) f(a)}{b a}$ for some c such that a < c < b.
- (B) f'(c) = 0 for some c such that a < c < b.

(C) f has a minimum value on $a \le x \le b$. \top (D) f has a maximum value on $a \le x \le b$. \top $\begin{bmatrix}
E \lor T & (extreme \\ \lor a \lor b)
\end{bmatrix}$ $\begin{bmatrix}
a_1 b \end{bmatrix}$

x	0	1	2
f(x)	1	k	2

The function f is continuous on the closed interval [0,2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0,2] if k =

- (B) $\frac{1}{2}$ (C) 1 (D) 2
- (E) 3

find the critical value(s).

$$g(x) = 2x^{5|3} - 5x^{2|3}$$

$$g'(x) = \frac{10}{3}x^{-1/3} - \frac{10}{3}x^{-1/3}$$

$$= \frac{10}{3}x^{-1/3}(x-1) = \frac{10(x-1)}{3x^{1/3}}$$

$$\chi = 0,1$$

Find the absolute extrema for y = cos(x/2) on [0, 4pi] $y' = -\frac{1}{2} sin(\frac{x}{2})$ Abs min: (2pi, -1) $-\frac{1}{2} sin(\frac{x}{2}) = 0$ Abs max: (0, 1)and (4pi, 1) $sin(\frac{x}{2}) = 0$ x

 $\frac{x}{2} = 0, \pi, 2\pi, 3\pi, \dots$ $X = 0, 2\pi, 4\pi, \dots$