2.6 Derivatives of Inverse Functions

Review: Two functions are inverse functions if

$$(f \circ f^{-1})(x) = \chi$$
and
$$(f^{-1} \circ f)(x) = \chi$$

Inverse Properties

- The graphs of f and f^{-1} are reflections about the line y=x.
- ullet The domain of f is the range of f^{-1} .
- ullet The range of f is the domain of f^{-1} .

A function has an inverse if and only if it is one-to-one.
 (monotonic)

y = f(x) (a, b) $y = f^{-1}(x)$

always always dect

THEOREM 2.17 The Derivative of an Inverse Function

Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which $f'(g(x)) \neq 0$. Moreover,

$$g'(x) =$$

$$f(x) = \sqrt{x-2} \qquad p: \begin{bmatrix} 2, \infty \\ 0, \infty \end{bmatrix} \qquad f^{-1}(x) \qquad p: \begin{bmatrix} 0, \infty \\ 0, \infty \end{bmatrix}$$

$$f'(x) = 2\sqrt{x-2} \qquad \qquad x = \sqrt{y-2} \qquad \qquad x^2 = y-2 \qquad \qquad x^2 = y-2 \qquad \qquad x^2 + 2 = y \qquad \qquad x = 0 \qquad \qquad x =$$

ex: Find the indicated value.

c)
$$f(x) = x^{5/3}$$
, $(f^{-1})'(243) =$

$$f(x) = x^{3} + 2x - 1$$

$$J = X$$

$$f'(x) = 3x^{2} + 2$$

$$f'(x) = 3x^{2} + 2$$

$$f'(x) = 5$$

$$f'(x) = 5$$

ex: If
$$f(x) = x^5 + 2x^3 + x - 1$$
 and
$$(f \circ g)(x) = (g \circ f) = x \text{ find } g'(3) = \frac{12}{12}$$

$$3 = x^5 + 2x^3 + x - 1$$

$$1 = x$$

$$f'(x) = 5x^4 + 6x^4 + 1$$

$$f'(1) = 12$$
(existing the condition of the co

3. 18% answered correctly

If $f(x) = x^3 + x$ and h(x) is the inverse of f(x), then h'(2) is

- A) $\frac{1}{13}$ B) $\frac{1}{4}$ C) 1 D) 4 E) 13

4. 14% answered correctly

Let f be a differentiable function such that f(3) = 15, f'(3) = -8, and f'(6) = -2, f(6) = 3. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?

- A) $-\frac{1}{2}$ B) $-\frac{1}{8}$ C) $\frac{1}{6}$ D) $\frac{1}{3}$ E) The value of g'(3) cannot be determined from the information given.

6.

Suppose f is a one-to-one function, which is differentiable for all real numbers x. The table below gives some of the values of f(x) and f'(x):

x	f(x)	f'(x)	
1	2	7	
2	3	7	
3	5	19	
4	10	43	

(a) Write an equation of the tangent line, T_1 , to the function

(b) Write an equation of the normal line, N_1 , to the function

Write an equation of the tangent line, T_2 , to the function f(x) at x = 3. $f(x) = \frac{b}{2} (x-3)$

10. Mean Score 0.95

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_1^{g(x)} f(t)dt$. Find the value w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

FR 6, 11, 17 and the Ch 2a review

26)
$$y = |n| \sin x|$$

$$y' = \frac{1}{\sin x} \cos x = \cot x$$

$$y'' = -\cos x$$

27.)
$$y = cscx$$

$$y' = -cscxcotx$$

$$y' = -\left(cscx \cdot -csc^2x + cotx \cdot (-cscxcotx)\right)$$

$$= csc^3x + cot^2xcscx$$

$$= cscx(csc^2x + cot^2x)$$

35)
$$g(x) = \begin{cases} \chi^2, & \chi \leq a \\ \alpha \times + b, & \chi > 2 \end{cases} g(x) = \begin{cases} 1x, & \chi \leq 2 \\ \alpha \times + 2 \end{cases}$$

 $|\lim g(x) = \lim g(x) = g(2)|$
 $|\lim g$

$$f(x) = +an \times f'(x) = sec^{2}x$$

$$f'(\frac{\pi}{4}) = \sqrt{2}$$

33.)
$$f(x) = k - x^2$$
 $y = -6x + 1$
 $k - x^2 = -6x + 1$ $-2x = -6$
 $x = 3$
 $x = -8$

4.)
$$f(x) = \frac{\chi+1}{\chi-1}$$

$$|\inf(x)| = \frac{\chi+1}{\chi-1}$$

$$|\inf(x)| = \frac{\chi+1}{\chi-1}$$

20.)
$$g(x) = 2e^{1-x^2}$$

$$g'(x) = 2e^{1-x^2}(-2x)$$

$$g'(x) = 2e^{1-x^2}(-2x)$$

$$e''(x)$$

$$\begin{aligned}
 & \lambda = x^2 e^{-x} \\
 & y' = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (2x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (-x) \\
 & 0 = x^2 e^{-x} (-x) + e^{-x} (-x) \\
 & 0 = x^$$

$$|8| \leq |x| = \frac{\ln x^{2}}{x}$$

$$|5| \leq |x| = \frac{2 \ln x}{x}$$

28.)
$$y = (x^{2}+1)^{5}$$

$$y' = 5(x^{2}+1) \cdot 2x$$

$$y' = 10x(x^{2}+1)$$

$$y'' = 10x \cdot 4(x^{2}+1)^{2}2x + (x^{2}+1)^{4} \cdot 10$$

$$y''' = 10(x^{2}+1)^{3} \left[8x^{2} + x^{2} + 1 \right] \quad \ln 2^{4}$$

$$= 10(x^{2}+1)^{3} \left(9x^{2}+1 \right) \quad 4 \ln 2$$

$$\ln 16$$

22.)
$$g(x) = \sec(5x) C = \frac{\pi}{3}$$

 $g'(x) = \sec(5x) + \sin(5x) \cdot 5$
 $g'(\frac{\pi}{3}) = \sec(\frac{5\pi}{3} + \cos\frac{\pi}{3}(5))$
 $(+2)(-\sqrt{3})(5)$
 $-10\sqrt{3}$

FR 6.) skip e

17b.)
$$f(x) = \sqrt{x^4 - 16x^2}$$

$$f(-x) = \sqrt{x^4 - 16x^2}$$
(even; symm.)
with y-axis

$$||c|| + |c|| +$$