2.5 Implicit Differentiation

Implicit Form Explicit Form
$$y = \frac{1}{x} = x^{-1}$$

ex: If
$$x^2 - y^2 = 16$$
 find $\frac{dy}{dx}$.

Implicit differentiation is nessecary to derive equations that can only be expressed implicitly.

ex: Find $\frac{dy}{dx}$.

a)
$$x^2 - 2y^3 + 4y = 2x$$

ex: Find $\frac{dy}{dx}$.

b)
$$x^2y - 2\cos 3x = 3$$

ex: Find $\frac{dy}{dx}$.

e) $y = \sin(xy)$

ex: If $x^2 + y^2 = 1$ find $\frac{d^2y}{dx^2}$.

ex:
$$x^2 - xy + y^2 = 7$$

a) Find
$$\frac{dy}{dx}$$
.

- b) Find the slope at the point (-1, 2).
- c) Write an equation of the tangent line to the graph at the point (-1, 2).
- d) Write an equation of the normal line to the graph at the point (-1, 2).

ex:
$$4x^2 + y^2 - 8x + 4y + 4 = 0$$

- a) Find the points, if any, at which the equation has a horizontal tangent line.
- b) Find the points, if any, at which the equation has a vertical tangent line.

Logarithmic Differentiation

When given a complicated equation it is often convenient to use logarithms as aids in differentiating nonlogarithmic functions. This process is called logarithmic differentiation.

Candidates for Logarithmic Differentiation:

$$y = \frac{(x-2)^2}{\sqrt{x^2+1}}$$
$$y = x^{x-1}$$

-
$$y = x^{x-1}$$

ex: Differentiate.

a)
$$y = \frac{(x-2)^2}{\sqrt{x^2+1}}$$

ex: Differentiate.

b)
$$y = x^{x-1}$$