2.3 Product & Quotient Rules

a)
$$y = (x+1)(x^2-3)$$

$$g(x) = \frac{2x^2 - 1}{x}$$

c)
$$y = e^x \sin x$$

d)
$$f(x) = \frac{x^2 + 1}{2x - 1}$$

THEOREM 2.8 The Product Rule

The product of two differentiable functions f and g is itself differentiable. Moreover, the derivative of fg is

$$\frac{d}{dx}[f(x)g(x)] =$$

ex: Which function(s) are good candidates for the product rule?

$$- f(x) = 4\sin x$$

-
$$y = xe^x$$

$$- y = (x+1)(x^2 - 3)$$

-
$$y = 2x^3$$

$$-g(x) = \sin 2x$$

a)
$$y = xe^x$$

$$g(x) = \sin 2x$$

THEOREM 2.9 The Quotient Rule

The quotient f/g of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$.

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$$

Remembering The Quotient Rule...

ex: Which function(s) are good candidates for the quotient rule?

$$-g(x) = \frac{5}{x}$$

$$- y = \frac{x}{5}$$

$$-y = \frac{e^x}{x+1}$$

$$- f(x) = \frac{x+1}{x}$$

-
$$y = \tan x$$

a)
$$y = \frac{e^x}{x+1}$$

b)
$$f(x) = x^3 \left(1 - \frac{2}{x+1} \right)$$

$$f(x) = \frac{3 - \frac{1}{x + 5}}{x - 1}$$

c) $y = \tan x$

d)
$$y = \cot x$$

e)
$$y = \sec x$$

f)
$$y = \csc x$$

Trigonometric Derivatives

$$\frac{d}{dx}[\sin x] = \frac{d}{dx}[\csc x] =$$

$$\frac{d}{dx}[\cos x] = \frac{d}{dx}[\sec x] =$$

$$\frac{d}{dx}[\tan x] = \frac{d}{dx}[\cot x] =$$

Remembering The Derivatives of Tangent, Cotangent, Secant and Cosecant...

*MEMORIZE THIS CHART

 $\tan x$ $\sec x$ $\sec x$

 $\cot x$ $\csc x$ $-\csc x$

ex: Find the equation of the tangent line to $y = x^2 \sec x$

at
$$x = \frac{\pi}{4}$$
.

ex: Find the point(s), if any, at which $f(x) = \frac{x^2}{x^2 + 1}$ has a horizontal tangent.

ex:

Х	f(x)	f'(x)	g(x)	g'(x)	
0	1	-1	2	5	
1	-1	2	4	0	
2	7	3	11	0.5	

Based on the values in the table above, if $H(x) = ef(x) + \pi x$, then $H'(0) = \frac{\pi}{2}$

(A)
$$\pi$$
-e (B) $e^{X}+\pi x$ (C) $e+\pi$ (D) e (E) $e^{-1}+\pi$

ex: Let
$$p(x) = f(x)g(x)$$
 and $q(x) = \frac{f(x)}{g(x)}$.

1.
$$p'(x)$$

2. p'(4)

3.
$$p'(-1)$$

4. q'(x)

5.
$$q'(-2)$$

6. q'(6)

<u>Higher Order Derivatives</u>

First derivative:	y',	f'(x),	$\frac{dy}{dx}$	$\frac{d}{dx}[f(x)],$	$D_x[y]$
Second derivative:	y",	f''(x),	$\frac{d^2y}{dx^2}$	$\frac{d^2}{dx^2}[f(x)],$	$D_x^2[y]$
Third derivative:	y‴,	f'''(x),	$\frac{d^3y}{dx^3}$	$\frac{d^3}{dx^3}[f(x)],$	$D_x^3[y]$
Fourth derivative:	$y^{(4)}$,	$f^{(4)}(x),$	$\frac{d^4y}{dx^4}$	$\frac{d^4}{dx^4}[f(x)],$	$D_x^4[y]$
nth derivative:	$y^{(n)}$,	$f^{(n)}(x)$,	$\frac{d^n y}{dx^n}$	$\frac{d^n}{dx^n}[f(x)],$	$D_x^n[y]$

a)
$$f(x) = 3x^4 + 2$$
, $f'''(x) = ?$

b)
$$y = \sin x$$
,
$$\frac{d^2x}{dx^2} = ?$$

c)
$$y = \sin x$$
,
$$\frac{d^5 x}{dx^5} = ?$$

d)
$$y = \sin x$$
, $\frac{d^{205}x}{dx^{205}} = ?$

e)
$$g(x) = \cos x$$
, $g^{(163)}(x) = ?$

f)
$$y = e^x$$
, $y^{(1111)} = ?$

FR 5

Let f be the function given by $f(x) = \frac{2x-5}{x^2-4}$.

- a. Find the domain of f.
- b. Write an equation for each vertical and each horizontal asymptote for the graph of f.
- c. Find f'(x).
- d. Write an equation for the line tangent to the graph of f at the point (0,f(0)).

FR 18

Let f be the function that is given by $f(x) = \frac{ax + b}{x^2 - c}$ and that has the following properties.

- (i) The graph of f is symmetric with respect to the y-axis.
- (ii) $\lim_{x \to 2^+} f(x) = +\infty$
- (iii) f'(1) = -2
- (a) Determine the values of a, b, and c.
- (b) Write an equation for each vertical and each horizontal asymptote of the graph of f.
- (c) Sketch the graph of f in the xy-plane provided below.