2.2 Basic Differentiation Rules

*AKA "Short Cut Rules"

THEOREM 2.2 The Constant Rule

The derivative of a constant function is 0. That is, if c is a real number, then

$$\frac{d}{dx}[c] =$$

$$y = 234897\pi$$

THEOREM 2.3 The Power Rule

If n is a rational number, then the function $f(x) = x^n$ is differentiable and

$$\frac{d}{dx}[x^n] =$$

a)
$$f(x) = x^3$$

$$f(x) = x^{20}$$

$$c) g(x) = \frac{1}{x}$$

d)
$$h(x) = \sqrt{x}$$

e)
$$y = \frac{1}{\sqrt{x}}$$

THEOREM 2.4 The Constant Multiple Rule

If f is a differentiable function and c is a real number, then cf is also differentiable and

$$\frac{d}{dx}[cf(x)] =$$

a)
$$y = 30x^7$$

$$g(x) = \frac{4}{\sqrt[3]{x}}$$

c)
$$g(x) = \pi$$

d)
$$m(x) = 4x$$

THEOREM 2.5 The Sum and Difference Rules

The sum (or difference) of two differentiable functions f and g is itself differentiable. Moreover, the derivative of f + g (or f - g) is the sum (or difference) of the derivatives of f and g.

$$\frac{d}{dx}[f(x) + g(x)] =$$

$$\frac{d}{dx}[f(x) - g(x)] =$$

$$\frac{d}{dx}[f(x) - g(x)] =$$

a)
$$y = 3x^4 - 2x + \pi$$

b)
$$f(x) = \pi^2 + \frac{1}{\pi} + \sqrt{\pi}$$

c)
$$s(x) =$$

THEOREM 2.6 Derivatives of Sine and Cosine Functions

$$\frac{d}{dx}[\sin x] = \frac{d}{dx}[\cos x] =$$

a)
$$y = 4\cos x - 2\sin x + 3$$

THEOREM 2.7 Derivative of the Natural Exponential Function

$$\frac{d}{dx}[e^x] =$$

a)
$$y = 3e^{x}$$

b)
$$y = x^2 - e^x$$

c)
$$f(x) = \cos x + 5e^x$$

d)
$$y = x(x^2 + 5)$$

$$d) f(x) = \frac{x^2 + 5}{x}$$

ex: Find the slope at the given point.

a)
$$f(x) = -5x^4 - 2x^3 + 3\pi$$
, $x = -1$

ex: Find the slope at the given point.

b)
$$g(x) = -e^x$$
, $x = 0$

ex: Write an equation of the tangent line at the given point.

a)
$$y = \cos x$$
, $x = \frac{3\pi}{4}$

ex: Write an equation of the tangent line at the given point.

b)
$$f(x) = 3 - \frac{3}{5x}$$
, $x = \frac{3}{5}$

ex: Find all points, if any, at which f(x) has a horizontal tangent line.

a)
$$f(x) = \sin x$$
, $[0,2\pi)$

ex: Find all points, if any, at which f(x) has a horizontal tangent line.

b)
$$y = e^x - 2$$

ex: Find an equation of a line that is tangent to $f(x) = 5x^2 + 3$ and parallel to 5x - y = 4.

ex: Find the value of k such that the line y = x + 4 is tangent to $f(x) = k\sqrt{x}$.