1.5/1.6 Infinite Limits and Limits at Infinity

REVIEW:

<u>Finding Horizontal Asymptotes</u> - if f(x) is a rational function...

$$f(x) = \frac{ax^n + \dots}{bx^m + \dots} \leftarrow \frac{\text{nth degree polynomial}}{\text{mth degree polynomial}}$$

If n < m , then the x-axis is the horizontal asymptote.

If
$$n = m$$
, then the horizontal asymptote is the line $\gamma = \frac{a}{b}$

3 If n > m , then there is no horizontal asymptote.

REMEMBER THE ACRONYM: BOBO BOTN EATSDC

*If f(x) is not a rational function but comes in the form of a fraction compare the magnitudes of the numerator and denominator and use "BOBO."

<u>Finding Vertical Asymptotes</u> - Vertical asymptotes are vertical lines which correspond to the zeroes of the denominator of a simplified rational function. (They can also arise in other types of functions.)

*WATCH OUT FOR HOLES!

ex: State the horizontal and vertical asymptotes.

a)
$$f(x) = \frac{x-1}{x^2 + 7x - 8}$$

b)
$$f(x) = \frac{x^2 - 4}{x - 5}$$

$$f(x) = \frac{5x}{\sqrt{4x^2 + 1}}$$

$$d) f(x) = \frac{\cos x}{2^x}$$

e)
$$f(x) = \frac{5 \cdot 3^x - 2}{3^x}$$

Infinite Limits:

$$\lim_{x \to c} f(x) = \infty \qquad \lim_{x \to c} f(x) = -\infty$$

ex: Find the limit. If the limit does not exist, explain why.

a)
$$\lim_{x \to 4} \frac{1}{x - 4}$$

e)
$$\lim_{x \to 7} \frac{x-9}{x-7}$$

f) $\lim_{x\to 7} \frac{x-9}{(x-7)^2}$

g)
$$\lim_{x\to 6} \frac{x}{x^2 - 36}$$

h)
$$\lim_{x \to 1} \frac{x-1}{x^2 - 7x + 6}$$

i)
$$\lim_{x\to 6} \frac{x-1}{x^2-7x+6}$$

$$\lim_{x \to 2} \frac{x^2 + 8x + 15}{x^2 + 3x - 10}$$

$$k) \lim_{x\to 0} \left(x^2 - \frac{1}{x}\right)$$

$$\lim_{x \to \frac{\pi}{2}} -2\sec x$$

m)
$$\lim_{x \to -3^{-}} \frac{x}{\sqrt{x^2 - 9}}$$

In general, if $\lim_{x\to c} f(x) = \frac{n}{0}$, $n \ne 0$, then f(x) must have a at x=c.

- If the multiplicity of the factor that produces the vertical asymptote is ______, the limit will not exist.
- If the multiplicity of the factor that produces the vertical asymptote is ______, the limit exists and is either _____ or ____.

Limits at Infinity:

$$\lim_{x \to \infty} f(x) \qquad \lim_{x \to -\infty} f(x)$$

*The existence or nonexistence of horizontal asymptotes will affect limits at infinity.

**KNOW YOUR LIBRARY OF FUNCTIONS!!!

ex: Find the limit. If the limit does not exist, explain why.

a)
$$\lim_{x\to\infty} \tan^{-1} x$$

b)
$$\lim_{x\to\infty} \sin x$$

c)
$$\lim_{x \to \infty} \frac{5x^2 - 4}{x^2 + 2}$$

d)
$$\lim_{x \to -\infty} \frac{5x^2 - 4}{x^2 + 2}$$

e)
$$\lim_{x \to -\infty} \frac{5x - 4}{x^2 + 2}$$

$$f) \lim_{x \to \infty} \frac{5x^2 - 4}{x + 2}$$

g)
$$\lim_{x\to\infty}\frac{\sin x}{x}$$

$$h) \lim_{x\to\infty} \frac{2^{-x}}{x^2}$$

$$i) \lim_{x \to \infty} \frac{\sqrt{9x^2 + 2}}{5x - 3}$$

$$i) \lim_{x \to -\infty} \frac{\sqrt{9x^2 + 2}}{5x - 3}$$

Justifying Asymptotes

Horizontal Asymptotes:

If f(x) has a horizontal asymptote at y=c show

or

If f(x) has a vertical asymptote at x=c show

or

ex: State the horizontal and vertical asymptotes. Then justify your answers using an appropriate limit statement.

a)
$$f(x) = e^x - 2$$

b)
$$y = \frac{\sqrt{6x^2 + 16}}{x - 2}$$