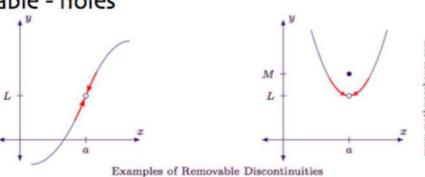
1.4 Continuity At A Point & The Intermediate Value Theorem

ex: If f(2)=4, can you conclude anything about the limit of f(x) as x approaches 2? Explain your reasoning.

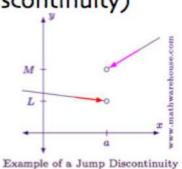
ex: If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain your reasoning.

Types of Discontinuities

· Removable - holes



Nonremovable - jumps, vertical asymptotes (a.k.a. infinite discontinuity)



Example of an Infinite Discontinuity

ex: At what x-values, if any, is f(x) discontinuous? For each discontinuity state the x-value, the type of discontinuity, and whether the discontinuity is removable or nonremovable.

$$f(x) = \frac{x^2 - 1}{x^2 - 4x + 3}$$

Continuity At A Point, x=c

DEFINITION OF CONTINUITY

Continuity at a Point: A function f is continuous at c if the following three conditions are met.

- 1. f(c) is defined.
- 2. $\lim_{x \to c} f(x)$ exists.
- $3. \lim_{x \to c} f(x) = f(c)$

Continuity on an Open Interval: A function is continuous on an open interval (a, b) if it is continuous at each point in the interval. A function that is continuous on the entire real line $(-\infty, \infty)$ is everywhere continuous.

ex: Is f(x) continuous at x=0? Justify your answer.

$$f(x) = \begin{cases} x+1, & x \le 0 \\ x^2+1, & x > 0 \end{cases}$$

ex: Is g(x) continuous at x=3? Justify your answer.

$$g(x) = \frac{x^3 - 27}{x - 3}$$

ex: Find the value of b so that the function f(x) is continuous everywhere.

$$f(x) = \begin{cases} x+3, & x \le 2 \\ bx+7, & x > 2 \end{cases}$$

ex: Find the value of a so that the function h(x) is continuous everywhere.

$$h(x) = \begin{cases} \frac{x^2 - a^2}{x - a}, & x \neq a \\ 28, & x = a \end{cases}$$

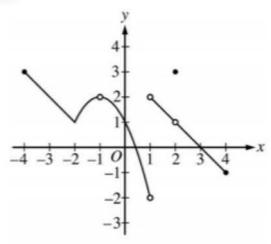
ex: Find the values of a and b so that the function f(x) is continuous everywhere.

$$f(x) = \begin{cases} 2 & x < 1 \\ ax^2 + bx & 1 \le x \le 4 \\ 3 & x > 4 \end{cases}$$

ex: Find the values of a and c so that the function f(x) is continuous everywhere.

f(x)=
$$\begin{cases} ax+3 & \text{if } x > 5 \\ 8 & \text{if } x = 5 \\ x^2 + bx + 1 & \text{if } x > 5 \end{cases}$$

ex:



Graph of f

The graph of the function f is shown in the figure above. For how many values of x in the open interval (-4, 4) is f discontinuous?

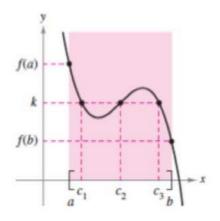
- (A) one
- (B) two
- (C) three
- (D) four

Intermediate Value Theorem

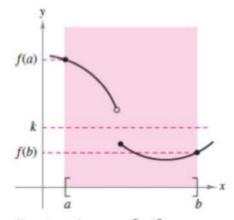
THEOREM 1.13 INTERMEDIATE VALUE THEOREM

If f is continuous on the closed interval [a, b], $f(a) \neq f(b)$, and k is any number between f(a) and f(b), then there is at least one number c in [a, b] such that

$$f(c) = k$$
.



f is continuous on [a, b]. [There exist three c's such that f(c) = k.]



f is not continuous on [a, b]. [There are no c's such that f(c) = k.]

ex: Use the Intermediate Value Theorem to show a zero exists on f(x) on the given interval.

$$f(x) = x^3 + 2x - 1,$$
 [0,1]

ex: Consider the table of values of f(x) given below.

x	0	2	3	10	20
f(x)	-2	3	4	20	-10

What is the least amount of time f(x)=15 on [0, 20]? Justify your answer.

ex:

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are continuous for all real numbers. The table above gives values of these functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6. Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.