Symmetry

Evaluate:

Evaluate:

$$(-x)^{3} = \chi^{3}$$

$$(-x)^{3} = -\chi^{3}$$

$$(-x)^{4} = \chi^{4}$$

$$-3(-x)^{3} = 3\chi^{3}$$

Ex 2) For each of the following graphs, list any symmetries, and state whether the graph shows a function.

Ex 3) The graph of a curve contains the point (3, -4).	
a) If the graph of the curve is symmetric about	b) If the graph of the curve is symmetric about
the waxis, the graph will also contain the point $\begin{pmatrix} -3 & -4 \end{pmatrix}$.	the x-axis, the graph will also contain the point
c) If the graph of the curve is symmetric about	d) If the graph of the curve is symmetric about
the origin, the graph will also contain the point $\begin{pmatrix} -3 & 4 \end{pmatrix}$.	the line $y=x$, the graph will also contain the point $-4,3$.

These replacements will produce an equivalent function if the graph has that type of symmetry

y-axis: replacing x with -x

x-axis: replacing y with -y

origin: replacing x with -x and y with -y

y = x: replacing x with y

Ex 5) Determine algebraically if the functions below have y-axis, x-axis, origin or y=x symmetry.

a)
$$y=|x|-2$$

y-axis: $y=|-x|-2$
 $y=|x|-2$
 $y=|x|-2$

e) $g(x) = \frac{5x^3 - x}{x^2 + 4}$ y-axis $y = 4(-x)^2 - (-x)^2 + 5$ $y = 4(-x)^2 - (-x)^2 + 5$ $y = 4(-x)^2 - (-x)^2 + 5$ $y = 4(-x)^2 - (-x)^2 + 6$ $y = -5x^3 + x$ $y = -5x^3 + x$ y = -5

$$y = |x| - 2$$

$$y=x^2-2$$