41.)
$$Q = \chi^2 + 7\chi - 3D$$

 $Q = (\chi + 10)(\chi - 3)$
 $\chi = -10, 3$

53.
$$2x^{2}-4x-8=-x^{2}+x$$

 $+x^{2}-x$
 $3x^{2}-5x-8=0$
 $(3x-8)(x+1)=0$
 $(x=8/3,-1)$

Square Root Review 1.6 Complex Numbers

Many students actually look forward to Mr. Atwadder's math tests.

*See printout.

HW: Day 7

Perfect Squares

$$1^2 =$$
_____ $7^2 =$ _____

$$2^2 =$$
_____ $8^2 =$ _____

$$3^2 =$$
 $9^2 =$ $9^2 =$

$$4^2 =$$
______ $10^2 =$ _____

$$6^2 =$$
______ $12^2 =$

Square Root Review radica

Square Root Properties

• Multiplication:
$$\sqrt{ab} = \sqrt{\alpha}$$
 ' \sqrt{b}

• Division:
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

*There are NO sum ($\sqrt{a+b}$) or difference ($\sqrt{a-b}$) properties!!!

Simplifying Radicals

*A radical is fully simplified when...

- the radicand has NO perfect square factors other than 1
- · there is NO radical in the denominator
- · the radicand does NOT involve decimals
- the radicand is positive

ex: Simplify.

a)
$$\sqrt{12} = \sqrt{4 \cdot \sqrt{3}}$$

= $2\sqrt{3}$

b)
$$\sqrt{27} = \sqrt{9 \cdot \sqrt{3}}$$

$$3\sqrt{3}$$

c)
$$\sqrt{500}$$
 $\sqrt{100} \cdot \sqrt{5}$
 $10\sqrt{5}$
d) $\sqrt{98} = \sqrt{49} \cdot \sqrt{2}$
 $7\sqrt{2}$
 $\sqrt{9} \cdot \sqrt{8} = 3\sqrt{8} = 3\sqrt{4}\sqrt{2}$
6) $\sqrt{72}$
e) $\sqrt{72}$

f)
$$\sqrt{\frac{9}{64}} = \frac{3}{8}$$

9)
$$\sqrt{\frac{25}{2}} = \frac{5}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}} \right) = \frac{5\sqrt{2}}{2}$$

h)
$$\sqrt{\frac{13}{5}} \cdot \sqrt{\frac{5}{5}} = \sqrt{\frac{65}{5}}$$

Conjugate
 $(x+y) \to (x-y)$

i) $\frac{4}{(2-\sqrt{3})} \cdot \frac{2+\sqrt{3}}{(2+\sqrt{3})}$

$$\frac{4(2+\sqrt{3})}{4-3} = 4(2+\sqrt{3})$$

$$\frac{2+\sqrt{3}}{(2+\sqrt{3})} = 4(2+\sqrt{3})$$

$$\frac{2}{1+\sqrt{5}} \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{2(1-\sqrt{5})}{-4/2}$$

$$1-5 = 1-\sqrt{5}$$

$$= -1+\sqrt{5}$$

$$= -1+\sqrt{5}$$

$$= -5$$

$$= 1-\sqrt{5}$$

$$= -1+\sqrt{5}$$

$$= -5$$

$$= -5$$

$$= -5$$

Imaginary Numbers

ex: Simplify.

a)
$$\sqrt{-9} = \sqrt{-1} \cdot \sqrt{9}$$

= $i\sqrt{9}$
= $3i$

$$c)\sqrt{-32} = \sqrt{-1} \cdot \sqrt{16} \cdot \sqrt{2}$$

$$i \cdot 4\sqrt{2}$$

$$4i\sqrt{2}$$

d)
$$2\sqrt{-45}$$
 $2\sqrt{-1}\sqrt{9}\sqrt{5}$ $2i\cdot 3\sqrt{5} = (2i)\sqrt{5}$

Complex Numbers

Standard Form: A+bi

Examples of Complex Numbers:

Real Part: _____ Imaginary Part:_

*EVERY NUMBER CAN BE EXPRESSED AS A COMPLEX NUMBER!

ex: Identify the real and imaginary parts.

a+bi

b)
$$4 + 3i$$

d) $6i\sqrt{5}$

real: O imaginay: 655 (or 6015)

e) $\frac{i}{2} - 3 = -3 + \frac{i}{2} = -3 + \frac{1}{2}i$ mag

f)
$$\frac{18-i}{20} = \frac{18}{20} - \frac{1}{20}i$$

$$= \frac{9}{10} - \frac{1}{20}i$$
real imaginary

ex: Simplify. State the answer in standard form.

a)
$$(3+6i)+(6-42i)$$

 $9-36i$

b)
$$(16-42i)-(3-64i)$$

 $/3+22i$

$$(x+y)-(3x+2y)$$

 $(x+y)(3x+2y)$
FOIL

$$\int_{-1}^{2} = c$$
 $i^{2} = -1$

$$(x+3)^{2} = (x+3)(x+3)$$

$$x+6x+9$$

$$0)7i(3-2i)$$
 $21i-14i$
 $21i+14=14+21i$

e)
$$(1+2i)(3-5i)$$

 $3-5i+6i-10i^{2}$
 $3+i+10$
 $13+i$
f) $(6-3i)(6+3i)$ Conjugates

conjugates FOIF

9)
$$(1-2i)^{2}$$

 $(1-2i)(1-2i)$
 $1-2i-2i+4i^{2}$
 $1-4i-4i-4=-3-4i$
h) $\frac{2}{3i}\cdot\frac{-3i}{-3i}$
 $\frac{-(6i)}{-9(2)}=\frac{-(6i)}{9}=\frac{-2i}{3}=\frac{-2}{3}i$

i)
$$\frac{5}{2+i} \frac{2-c}{(2-i)}$$

$$\frac{5(2-c)}{4-i^2}$$

$$\frac{5(2-c)}{5(2-c)} = 2-c$$

 $D\frac{5+2i}{3-2i}$

i²· i²

$$i^2 =$$

$$i^3 = \underline{}$$

$$i^5 =$$

$$i^6 =$$

$$i^7 = -i$$

$$i^8 =$$

$$i^9 =$$

$$i^{10} =$$

$$i^{11} =$$

$$i^{12} =$$

a) i^{3281}

 $i^{726} = -1$

Review

ex: Sketch.

a)
$$y = 3x^2 - 6x$$

b)
$$y = -2(x+3)^2 - 4$$