
Number Sets, Set & Interval Notation

*See printout.

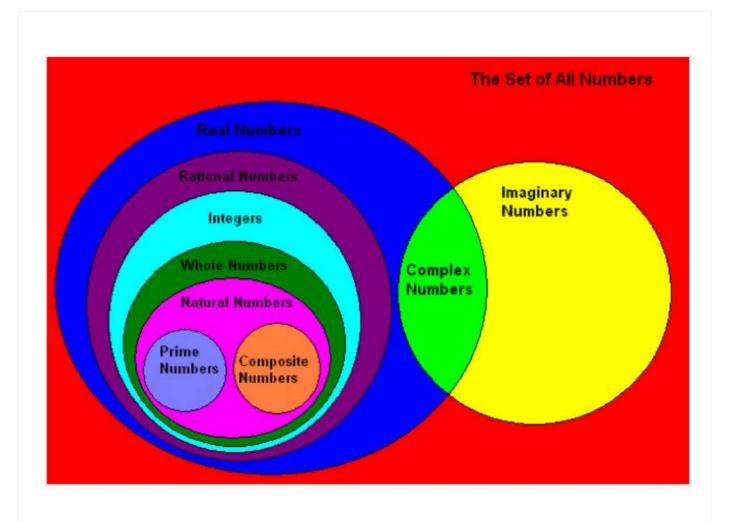
Number Set	Symbol	Definition
Real	R	Areal number is a value that can be represented as a quantity on a continuous number line.

*See printout.

Number Set	Symbol	Definition
Rational	Q	A rational number is any quantity that can be expressed as the ratio of two integers. Ex: $4(\text{since}^4 = \frac{8}{2})$, 1.2 (since $1.2 = \frac{12}{10} = \frac{6}{5}$), $-\sqrt{9} \text{ (since } -\sqrt{9} = -3 = \frac{-3}{1}, etc.)$

Number Set	Symbol	Definition
Irrational	I	An irrational number is any quantity that can NOT be expressed as a fraction (any nonrepeating & nonterminating decimal) $\mathbf{Ex}: \pi, e, \sqrt{2}$

≈3.14


2.72

Number Set	Symbol	Definition
Integers	Z	The set of integers contains whole numbers, negative whole numbers and zero. {3, -2, -1, 0, 1, 2, 3}

Number Set	Symbol	Definition
Whole		Whole numbers are nonnegative integers {0, 1, 2, 3}

Number Set	Symbol	Definition
Natural	N	Natural numbers are positive integers. This set is commonly referred to as the "counting" numbers set. {1, 2, 3}

Number Set	Symbol	Definition
Digits		A digit is any number that can be found in a phone number. {0, 1, 29}

ex 1: List all sets to which each number belongs.

a) 2

R, Q, Z, W, N, D

b)
$$\sqrt{4} - \sqrt{9} R, R, Z,$$

c)
$$\pi(3)^2$$
 $\mathbb{R}_1 \mathbb{I}_1$

Set & Interval Notation

<u>Set Notation</u> - A Set is a collection of things (usually numbers). Example: {5, 7, 11} is a set. But we can also "build" a set by describing what is in it. Here is a simple example of set-builder notation:

bracket { x x > 0}

bracket { x x > 0}

x is greater

all values

of x

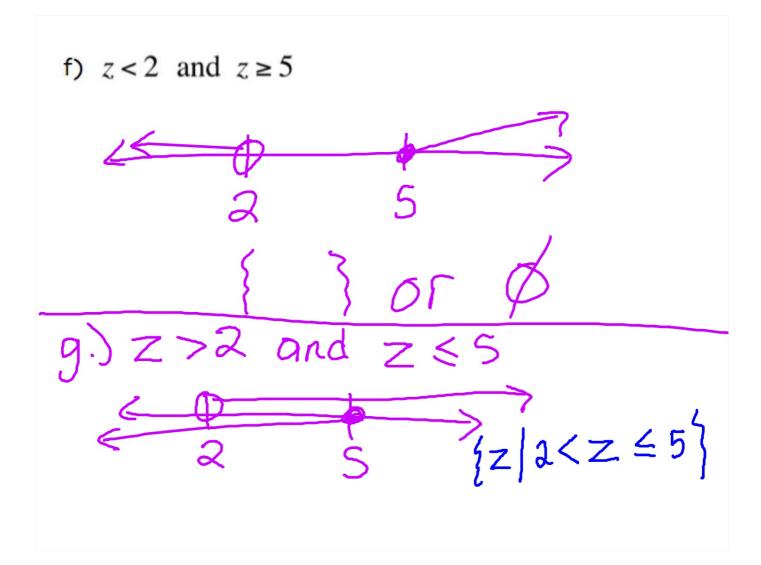
ex 2: Express each set of numbers in set notation.

a) $n \le 40$

 $\{n \mid n \leq 40\}$

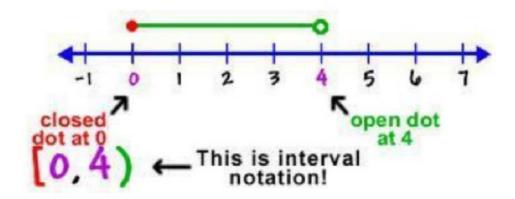
b) domain: the set of real numbers

 $\{x \mid x \in \mathbb{R}\}$ c) range: the set of integers $\{y \mid y \in Z\}$


d)
$$\beta x + 4 \neq \frac{1}{2}$$

$$6 \times + 8 \neq 1$$

$$6 \times + -7$$


$$6 \times + -7 = 0$$
e) $z < 2$ or $z \ge 5$

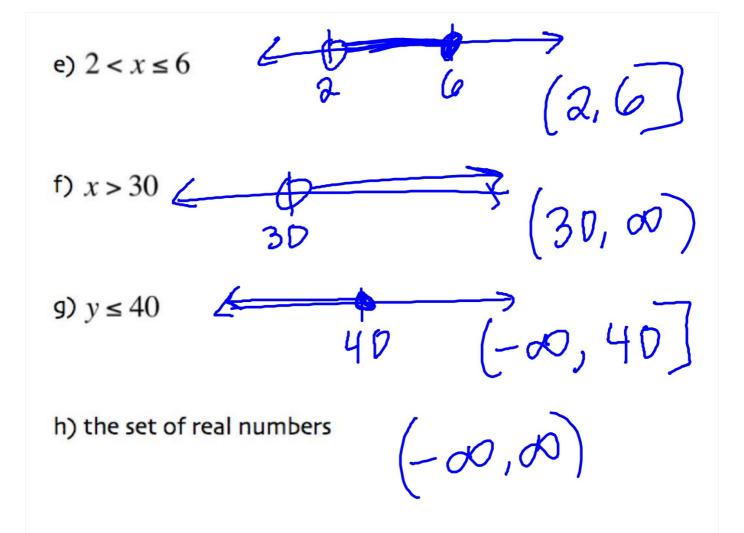
$$\left\{ Z \mid Z < Q \text{ or } Z > 5 \right\}$$

<u>Interval Notation</u> - A notation for representing an interval as a pair of numbers. The numbers are the endpoints of the interval.

*Parentheses and/or brackets are used to show whether the endpoints are excluded or included.

Parentheses, (), indicate a quantity is <u>not included</u>

Brackets, [], indicate a quantity is <u>included</u>


Examples of interval notation:

ex 3: Express each set of numbers in interval notation.

a)
$$\frac{1}{-10} + \frac{1}{-8} + \frac{1}{-6} + \frac{1}{-4} + \frac{1}{-2} + \frac{1}{0} + \frac{1}{2} = \begin{bmatrix} -6 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[-25,\infty)$$

d)
$$\frac{1}{-4-3-2-1} = \frac{1}{0} = \frac{1}{2} = \frac{1}{3} = \frac{1}{4} = \frac{1}{5} = \frac{1}{6} = \frac{1}{7} = \frac{1}{8} = \frac{1}{9} = \frac{1}{10} = \frac{1}{11} = \frac{1}{11} = \frac{1}{10} = \frac{1}{10} = \frac{1}{11} = \frac{1}{10} = \frac{1}{10}$$

- i) the set of whole numbers
 - NA
- j) no greater than -25

$$\left(-\infty, -25\right)$$

k)
$$z \le$$
 or $z > 17$

$$(-00, 6) V (17, 00)$$

m)
$$n=3$$

$$[3,3] \text{ or } [3]$$

n)
$$n \neq 3$$

$$(-\infty, 3) \cup (3, \infty)$$

Solve. $0.3(x-4) \le 2 + 5(x+1)$ $3x-12 \le 2+5x+5$ $-2x \le 19$ $x \ge -19$ (x | x > -19) $(x \ge -19)$

$$2(5x+1) > 3(x-3)$$

$$10x+2 > 3x-9$$

$$7x > -11 \qquad {x/x} > -4$$

$$x>-11$$

$$2(5x+1) > \pm (x-3)$$