$$|9) y = \frac{1}{2}(x-5)^{2} - 100$$

$$0 = \frac{1}{2}(x-5)^{2} - 100$$

$$100 = \frac{1}{2}(x-5)^{2}$$

$$200 = (x-5)^{2}$$

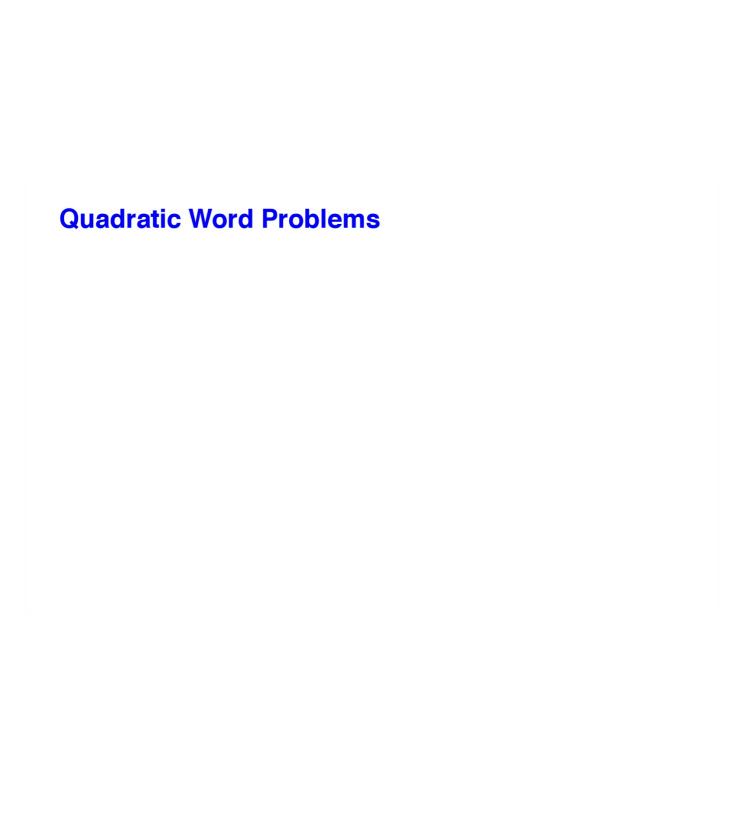
18.)
$$5(2x-3) + 4 = -56$$

 -4

$$\sqrt{(2x-3)} + \sqrt{12}$$

$$2x-3 = \pm 2i\sqrt{3}$$

$$2x = 3 \pm 2i\sqrt{3} = \frac{3}{2} \pm i\sqrt{3}$$


$$|6\rangle -3x^{2} - 10x + 8 = 0$$

$$-1(3x^{2} + 10x - 8) = 0$$

$$-1(3x - 2)(x + 4) = 0$$

$$X = \frac{2}{3}, -4$$

12.)
$$12x^{2}-4x=5$$

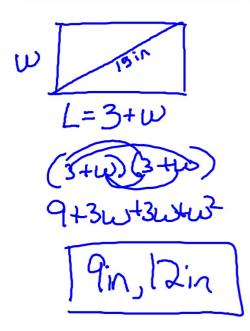
 $12x^{2}-4x-5=0$
 $(2x+1)(6x-5)$ 30
discriminant $(-4)^{2}-4(12)(5)$
Our perfect $(-4)^{2}-4(12)(5)$
Factorable 256

Consecutive Integers

X, X+1, X+2, X+3,

Consecutive odd integers

X, X+2, X+4, X+6, ...-


consecutive even integers

X, X+2, X+4, X+6,...

1)Find the largest possible three consecutive integers such that the product of the first and the second is equal to the product of -6 and the third.

$$X, X+1, X+2$$

 $X(x+1) = -6(x+2)$
 $X+1 = -6x-12$
 $X+7x+12=0$
 $(x+3)(x+4)=0$

2) The length of a rectangle is 3 inches more than its width. If the length of the diagonal is 15 inches, find the dimensions of the rectangle

Pythagorean Theorem:
$$(2 + b^2 - c^2)$$

$$w^2 + (3 + w^2) = 15^2$$

$$w^2 + 9 + 6w + w^2 = 225$$

$$2w^2 + 6w - 216 = 6$$

$$2(w^2 + 3w - 108) = 6$$

$$2(w + k)(w - 9) = 6$$

$$w = 9$$

4) Suppose that one leg of a right triangle is 1 more than the other leg; and the hypotenuse is 1 less than 2 times the shorter leg. Find the length of all the sides

$$x+1$$
 x x x x x x x

$$\chi^2 + (\chi + I)^2 = (2\chi - I)^2$$

6) A rectangular pool in a water-purification plant requires a surface area of 1240 square feet. If the pool is situated in a room with dimensions 70 ft by 28 ft and the distance from the pool edge to the room wall is uniform, find the dimensions of the pool.

$$(70-2x)(28-2x)=1240$$

 $1960-140x-56x+4x^{2}=1240$
 $4x^{2}-196x+1960=1240$
 $x^{2}-49x+490=310$
 $x^{2}-49x+180=0$
 $(x-45)(x-4)=0$

- 7) The equation for an object's height s at time t seconds after launch is $s(t) = -4.9t^2 + 19.6t + 58.8$, where s is in meters.
- a) When does the object strike the ground?

 $0 = -4.91^{2} + 19.66 + 58.8$ $= -4.9(1^{2} - 44 - 12)$ b) At what time does the object reach its maximum height?

- X-value of vertex; $\chi = -\frac{b}{3a} = -\frac{(-4)}{2(1)} = 2 \sec c$ c) What is the maximum height of the object?

$$S(2) = -49(2) + 19.6(2) + 58.8$$

= 78.4 meters

12) The product of two consecutive positive odd integers is 1 less than four times their sum. Find the two integers.

$$X(x+2)=4(2x+2)-1$$

 $X^2+2x=8x+8-1$

$$(x-7)(x+1)=0$$
 $(x-7)(x+1)=0$
 $(x=7)(x=-1)$