

51.)
$$f(x) = \log_4(x+2) - 1 + 2 = 1$$

 $\frac{x}{2} + 1 = \log_4(x+2)$
 $\frac{y}{2} + 1 = 1 + 2$
 $\frac{y}{1} = x+2$
 $\frac{y}{1} = x+2$

 $y = log_3(x-\frac{1}{2})$ $D:(\frac{1}{2},\infty)$

$$y = \ln x - 5$$

$$x \mid y$$

$$e \mid -4$$

$$-5$$

$$1/e \mid -6$$

4.7 Exponential Word Problems

Two Types

- 1. Compound Interest
- 2. Growth/ Decay Models

Compound Interest

For interest compounded n times per year:

$$A = P\left(1 + \frac{r}{n}\right)^{n+1}$$

Where:

- A Accumulated amount
- P Principal (starting amount)
- r rate (decimal)
- n number of times compounded
- t time

	n
Annually	
Quarterly	4
Monthly	12
Weekly	52
Daily	365
Semiannually	2
Bimonthly	24

twice twice twice month

Compound Interest

For interest compounded continuously:

$$A = Pe^{rt}$$

Where:

- A Accumulated amount
- P Principal r rate (decimal) t time

ex 1: Find the total value of a \$7,300 investment it is invested at 7% annual interest compounded semiannually for 3 years. 1=0.07

$$A = 7300 \left(1 + \frac{.07}{2}\right)^6$$

$$\$ 8973.56$$

*See printout.

ex 2: Find the total value of a \$7,300 investment it is invested at 7% annual interest compounded continuously for 3 years.

$$A = 7300e^{.073}$$
 $A = 7300e^{.21}$
 $4 = 7300e^{.21}$

ex 3: Find the total value of a \$1.17 investment it is invested at 9% annual interest compounded daily since 1927. + = 89

$$H = 1.17 \left(1 + \frac{.09}{365}\right)^{365.89}$$

$$53519.30$$

ex 3: ABC Bank is offering to double your money! They say that if you invest with them at 6% interest compounded continuously they will double your money. If you invest \$1500 in the account, how long will it take to double your money.

A = Pe .06t
$$h 2 = .06t$$

$$\ln 2 = .06t$$

$$\frac{\ln 2}{\sqrt{100}} = 7 \approx 11.55 \text{ years}$$

ex 5: An investment of \$7,000 becomes \$10,000 when invested for 5 years in a bank that compounds interest quarterly. What interest rate does the bank use?

Growth/Decay Models

$$y = ab^{x}$$

$$a \neq 0, \quad b > 0, \quad b \neq 1$$

Where:

- y new amount a starting amount b growth | decay factor
- x time

Growth: b > 1 Decay: 0 < b < 1

ex 6: From 1997 to 2002 the number n (in millions) of DVD players sold in the United States can be modeled by

$$n = 0.42(2.47)^t$$

a) Does this model represent a growth or decay model? Explain?

Growth because b > 1 (which is 2.47)

ex 6: From 1997 to 2002 the number n (in millions) of DVD players sold in the United States can be modeled by

$$n = 0.42(2.47)^t$$

b) What is the initial amount?

0.42 (in millions) which is 420,000

ex 6: From 1997 to 2002 the number n (in millions) of DVD players sold in the United States can be modeled by

$$n = 0.42(2.47)^t$$

c) What is the growth factor/decay factor?

growth: 2.47

- ex 6: From 1997 to 2002 the number n (in millions) of DVD players sold in the United States can be modeled by
- $n = 0.42(2.47)^{t} \quad \text{for each decrease}$ d) What is the annual percent of increase/decrease?
- d) What is the annual percent of increase/decrease?

$$2.47 = 1 + \frac{\pi}{n}$$

ex 7: A species of dolphins is decreasing at a rate of 3.1% per year. If there are currently 20,000 dolphins, how many will there be in 30 years? Round to the nearest dolphin.

$$A = P(1 - \frac{r}{n})^{3D}$$

$$= 20,000 (1 - \frac{.031}{1})^{3D}$$

$$= 20,000 (.969)^{3D}$$

$$= 7776$$

ex 8: If you buy a new car for \$18,000 and cars depreciate at a rate of roughly 7% per year, how much could you sell it for

in 3 years?

 $A = 18,000 (1-.07)^3$

\$14,478.43

ex 9: If you bought a car 5 years ago for \$15,000 and today you can sell it for \$7,000, what was its rate of depreciation?

 $7,000 = 15000(1-r)^{5}$

14.14%

ex 10: Dinner at your grandfather's favorite restaurant now costs \$25.25 and has been increasing steadily at 4% per year. How much did it cost 35 years ago when he was courting your grandmother? $25.25 = 7 (1+.04)^{35}$

\$6.40

ex 11: If a gallon of milk costs \$3 now and the price is increasing 10% per year, how long before milk costs \$10 a gallon?

 $|D = 3(1 + 10)^{+}$

12.6 years