```
HW Ellipse WS
(do not answer
"eccentricity")
#1 a - d
#2 a - h
#3 b, c, d, e
#4 a
```

An ellipse is the set of all points in a plane such that the sum of the distances from two fixed points is constant.

These two points are called the foci of the ellipse.

Ellipse:

Every ellipse has two axes of symmetry:

The endpoints of the Major Axis are the vertices of the ellipse.

The endpoints of the Minor Axis are the co-vertices of the ellipse.

Key Concept Equations of Ellipses Centered at (h, k) Folda			
Standard Form	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	
Orientation	horizontal	vertical	
Foci	$(h \pm c, k)$	$(h, k \pm c)$	
Vertices	$(h \pm a, k)$	$(h, k \pm a)$	
Co-vertices	$(h, k \pm b)$	$(h \pm b, k)$	

Eccentricity of an ellipse: c/a

 \mathbf{a} = the distance from the center to a vertex

b = the distance from the center to a co-vertex

 \mathbf{c} = the distance from the center to a focus

$$a^2 - b^2 = c^2$$

$$a^2 > b^2$$

1) Determine the center, vertices, co-vertices, and foci.

Then graph the ellipse.

$$\frac{\chi^{2}}{64} + \frac{(y-8)^{2}}{9} = 1$$

Conter: (0,8)

Celliel .Coro		
Vertice S	Covertices	foci
64=a2	9=62	a - b - c,
8 = a	3 = b	64 - 9 = 0
(8,8)	(0,5)	155 = C
600	(0.11)	(155,

$$\sqrt{-9} = C$$
 $\sqrt{55} = C$
 $(\sqrt{55}, 4)$
 $(-(55, 4))$

2) Find the equation of the ellipse in standard form.

Then find the center, vertices, covertives, and foci. (-2,8) $-16y+52=-2x^2-8x-y^2$ (-2,8) (-2,8+120) (-2,8+120) (-2,8+120) (-2,8-120) (-2,8-120) (-2,8-120) (-2,8-120) (-2,8-120) (-2,8-120) (-2+(10,8) (-2+(10,8) (-2+(10,8) (-2+(10,8) (-2+(10,8) (-2+(10,8) (-2,8+110) (-2,8+110)

Center
$$(3, 9)$$

$$\frac{(x-3)^{2}}{25} + \frac{(y-9)^{2}}{9} = 1$$

$$cv$$

$$C^{2} = \alpha^{2} - b^{2}$$

$$16 = \alpha^{2} - 9$$

$$25 = \alpha$$

4) Find an equation of the ellipse given the characteristics.

endpoints of major axis (4, 18), (4, -4) 2^{2} lendpoints of minor axis (12, 7), (-4, 7) 166

Center
$$(4,7)$$

$$\frac{(x-4)^{2}}{64} + \frac{(y-7)^{2}}{121} =$$

5) major axis vertical with length 1D; length of minor axis = 4; Center (-2,3) $\frac{(X+2)}{4} + \frac{(y-3)}{25} = 1$