
2x2 Systems of Equations & Inequalities

*See printout.

$$-4y - 11x = 36$$

$$20 = -10x - 109$$

$$-4 [2 = -x - y]$$

$$-36 = -11x - 4y$$

$$-8 = 4x + 4y$$

$$-8 = 4x + 4y$$

$$-8 = 4(-4) + 4y$$

$$8 = 4y$$

$$2 = 4y$$

$$(-4)$$

$$3x + y = 7 - 2(2x - 3y = 6)$$

$$-(3x + y = 4) - 4x - 6y = 12$$

$$-(4x + 6y = -12)$$

$$-(3x + y = 7) - 2x - y = -4$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

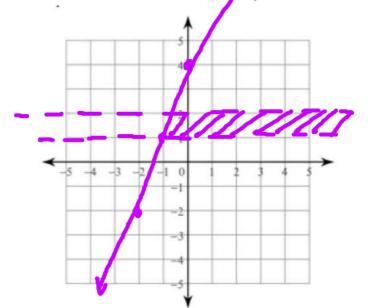
$$-(3x + y = 7) - 4x + 6y = -12$$

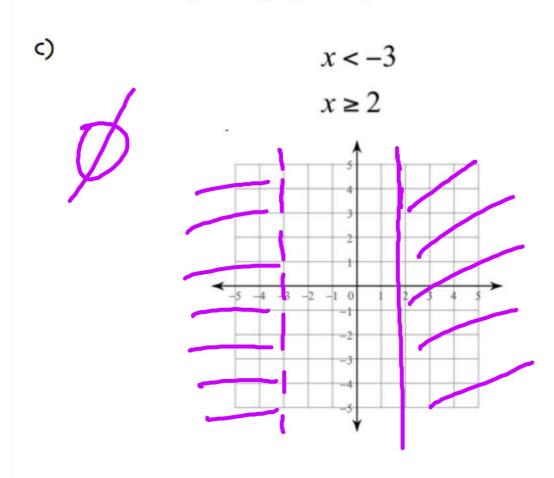
$$-(3x + y = 7) - 4x + 6y = -12$$

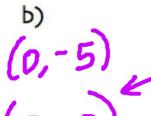
$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

$$-(3x + y = 7) - 4x + 6y = -12$$

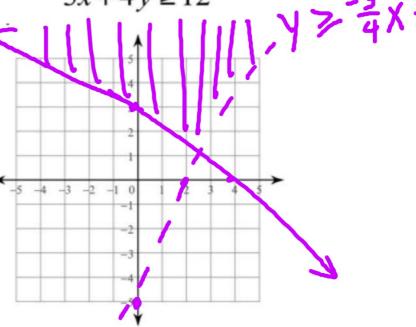

$$-(3x + y = 7) - 4x + 6y = -12$$


$$-(3x + y = 7) - 4x + 6y = -12$$


$$-(3x + y = 7)$$

d)

$$1 < y < 2$$
$$y \le 3x + 4$$

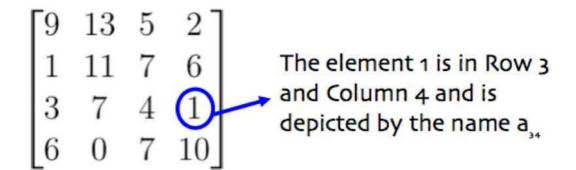


$$5x-2y<10 \rightarrow y > \frac{5}{2}x - 5$$

$$3x+4y \ge 12$$

$$3x + 4y \ge 12$$

inequalities WS: odds


Cramer's rule wkst: 1 - 4 ali

a)
$$y \ge -3$$

$$y < -\frac{5}{2}x + 2$$

What is a Matrix?

A matrix is a rectangular array of variables or constants organized in rows and columns, enclosed by **brackets**. Each value in the matrix is referred to as an element.

REVIEW

ex: Solve graphically.

$$y \ge 2x + 1$$

$$3x + 4y < 12$$

$$y < \frac{3}{4}x + 3$$

REVIEW

ex: Solve algebraically.

REVIEW

ex: The admission fee at a small fair is \$1.50 for children and \$4.00 for adults. On a certain day, 2200 people enter the fair and \$5050 is collected. How many children and how many adults attended?

a: adutts
$$1.5c + 4a = 5050$$

c: children $c + a = 2200$
 $1.5(2200-a) + 4a = 5050$
 $2.5a = 1750$
 $a = 700 adv = 1500$

2x2 systems of equations and inequalities 2x2 word problems 2x2 systems with Cramer's Rule 3x3 systems of equations ex: Name the circled element.

a)
$$\begin{bmatrix} 9 & 13 & 5 & 2 \\ 1 & 11 & 7 & 6 \\ 3 & 7 & 4 & 1 \\ 6 & 0 & 7 & 10 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 9 & 13 & 5 & 2 \\ 1 & 11 & 7 & 6 \\ 3 & 7 & 4 & 1 \\ 6 & 0 & 7 & 10 \end{bmatrix}$$

Matrix Dimensions

A matrix is often described by its dimensions. A matrix with m rows and n columns is known as an "m x n matrix."

ex: State the dimensions of each matrix.

a)
$$\begin{bmatrix} 3 & -1 & 5 \\ 0 & 4 & 2 \end{bmatrix}$$

 2×3 matrix

a)
$$\begin{bmatrix} 3 & -1 & 5 \\ 0 & 4 & 2 \end{bmatrix}$$
 b) $\begin{bmatrix} 7 & 8 \\ 0.5 & -10 \end{bmatrix}$ 2×3 matrix 2×2 matrix

Special Matrices

Row Matrix - one row

Column Matrix - one column

Special Matrices

Square Matrix - same number of columns and rows

ex:
$$\begin{bmatrix} 7 & 8 \\ 0.5 & -10 \end{bmatrix}$$

Zero Matrix - every element is zero

ex:
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Determinants

A determinant is a matrix function that only accepts a <u>square matrix</u>.

Notation for the Determinant of Matrix A:

 $\det(A)$ A D_A

*The determinant of a 2x2 square matrix is called a second-order determinant.

*The determinant of a 3x3 square matrix is called a third-order determinant.

ex: Evalutate.

ex: Evalutate.

b)
$$\begin{vmatrix} 0 & 6 \\ 4 & -11 \end{vmatrix}$$

down - UP

Cramer's Rule
Cramer's Rule is an algebraic method for solving systems of equations using determinants of matrices.

a)
$$x-3y=4$$
 $5x+7y=8$

$$\begin{vmatrix}
X = Dx - 52 - 26 \\
D = 22 - 11
\end{vmatrix} = \frac{54}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
X = Dx - 52 - 26 \\
D = 11
\end{vmatrix} = \frac{54}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
X = Dx - 52 - 26 \\
D = 11
\end{vmatrix} = \frac{54}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
X = Dx - 52 - 26 \\
D = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
X = Dx - 3 \\
D = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
X = Dx - 3 \\
D = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 3 \\
B = 11
\end{vmatrix} = \frac{6}{D} = \frac{6}{11}$$

$$\begin{vmatrix}
A = A - 20 = -12
\end{vmatrix}$$

$$\begin{vmatrix}
A = A - 20 = -12
\end{vmatrix}$$

$$\begin{vmatrix}
A = A - 20 = -12
\end{vmatrix}$$

a)
$$(x-3y=4)-5$$

 $5x+7y=8$

$$-5x+15y=-20$$

$$x+\frac{18}{11}=4$$

$$x+7y=8$$

$$x=4-\frac{18}{11}$$

$$y=\frac{18}{11}$$

$$y=\frac{18}{11}$$

b)
$$7x - 7y = 8$$

 $-3x + 3y = 2$
 $D = \begin{vmatrix} 7 & -7 \\ -3 & 3 \end{vmatrix} = 21 - 21 = D$

c)
$$4x-3y=11$$

 $6x+5y=7$
 $D = \begin{vmatrix} 4 & -3 \\ 6 & 5 \end{vmatrix} = 20+18=38$ $\frac{Dy}{D} = -1$
 $\frac{D}{2} = \frac{11}{2} = \frac{11}{2}$

lane flying in the same direction of the wind travels 183 mph. If the same to fly against the wind it would travel 141 mph. Find the speed of the p

p+w=183 p-w=141 ir and the speed of the wind.

bind: 21 mph

coin box of the hospital's vending machine contains only quarters a e are 6 times as many quarters as dimes. If the total amount of mon e day was \$28.80 how many of each coin was in the box? 250 + 100 = 28.80